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A GENERALIZATION OF THE GLIVENKO-CANTELLI THEOREM

By Howarp G. Tucker
University of California, Riverside

A theorem referred to as the Glivenko theorem or the Glivenko-Cantelli
theorem states thatif X; , X,, ---, X,, - - - is a sequence of independent, identi-
cally distributed random variables with any common distribution function F(z),
then the sequence {F.(z)} of empirical distribution functions converges uni-
formly to F(x) with probability one. (See Loéve [3] and Gnedenko [2].) The
assumption of independence is not necessary for this theorem, and it is readily
observed that the same conclusion holds if the sequence of random variables is
a strictly stationary, ergodic (or metrically transitive) sequence. The purpose
of this note is to prove a generalization of this theorem in the case where the
sequence of random variables is strictly stationary, not necessarily ergodic, and
with the same assumption that the common distribution function is arbitrary.

It is assumed that the reader is familiar with strictly stationary stochastic
processes (with discrete time) and is acquainted with the notion of measure-
preserving set transformation determined by the process and the notion of ran-
dom variable transformation determined by this set transformation. Information
on these concepts is available in Doob [1] and Loéve [3]. The principal result
to be used in the proof of the theorem is the ergodic theorem for random variables
(see Loéve [3], p. 434), which can be stated as follows:

Let 8 be a measure-preserving set transformation over the probability
space (R, @, P), let T be the random variable transformation deter-
mined by S, and let 3 be the invariant sub-sigma-field of @ determined
by 8. If X is any random variable for which E | X | < «, then

Pn ' (X +TX+ --- + T"'X) - E(X|3)} = 1.
By means of the ergodic theorem in this form the following theorem is obtained.
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