ON DEVIATIONS OF THE SAMPLE MEAN

By R. R. BAHADUR AND R. RANGA RAO

Indian Statistical Institute, Calcutta

1. Introduction. Let X_1 , X_2 , \cdots be a sequence of independent and identically distributed random variables. Let a be a constant, $-\infty < a < \infty$, and for each $n = 1, 2, \cdots$ let

$$(1) p_n = P\left(\frac{X_1 + \cdots + X_n}{n} \ge a\right).$$

It is assumed throughout the paper that the distribution of X_1 and the given constant a satisfy the conditions stated in the following paragraph. These conditions imply that $p_n > 0$ for each n, and that $p_n \to 0$ as $n \to \infty$. The object of the paper is to obtain an estimate of p_n , say q_n , which is precise in the sense that

$$(2) q_n/p_n = 1 + o(1) as n \to \infty.$$

Let t be a real variable, and let $\varphi(t)$ denote the moment generating function (m.g.f.) of X_1 , i.e., $\varphi(t) = E(e^{tX_1})$, $0 < \varphi \le \infty$. Define

$$\psi(t) = e^{-at}\varphi(t).$$

Let T denote the set of all values t for which $\varphi(t) < \infty$. We suppose that $P(X_1 = a) \neq 1$, that T is a non-degenerate interval, and that there exists a positive τ in the interior of T such that $\psi(\tau) = \inf_t \{\psi(t)\} = \rho$ (say). These conditions are satisfied if, for example, $\varphi(t) < \infty$ for all t, $E(X_1) = 0$, a > 0, and $P(X_1 > a) > 0$. In any case, τ and ρ are uniquely determined by

(4)
$$\frac{\varphi'(\tau)}{\varphi(\tau)} = a \quad \text{and} \quad \rho = \psi(\tau),$$

where $\varphi' = d\varphi/dt$, and we have $0 < \rho < 1$.

There are three separate cases to be considered.

Case 1: The distribution function (d.f.) of X_1 is absolutely continuous, or, more generally, this d.f. satisfies Cramér's condition (C) [1, p. 81].

Case 2: X_1 is a lattice variable, i.e., there exist constants x_0 and d > 0 such that X_1 is confined to the set $\{x_0 + rd : r = 0, \pm 1, \pm 2, \cdots\}$ with probability

Case 3: Neither Case 1 nor Case 2 obtains.

We can now state

Theorem 1. There exists a sequence b_1 , b_2 , \cdots of positive numbers b_n such that

(5)
$$p_n = \frac{\rho^n}{(2\pi n)^{\frac{1}{2}}} b_n [1 + o(1)], \quad \log b_n = O(1)$$

Received September 29, 1959; revised July 13, 1960.