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0. Introduction. Given a sequence of independent identically distributed
random variables X; , Xz, - -+ , X, , - - - with common probability density func-
tion f(x), how can one estimate f(x)?

The problem of estimation of a probability density function f(x) is interesting

for many reasons. As one possible application, we mention the problem of esti-
mating the hazard, or conditional rate of failure, function f(z) /{1 — F(z)}, where

F(z) is the distribution function corresponding to f(z). In this paper we discuss
the problem of estimation of a probability density function and the problem of

determining the mode of a probability density function. Despite the obvious
importance of these problems, we are aware of only two previous papers on the
subject of estimation of the probability density function (Rosenblatt [5] and
Whittle [6]).

In this paper we show how one may construct a family of estimates of f(x), and
of the mode, which are consistent and asymptotically normal. We shall see that
there are a multitude of possible estimates. We do not examine here the question
of which estimate to use.

The problem of estimating a probability density function is in some respects
similar to the problem of estimating the spectral density function of a stationary
time series; the methods employed here are inspired by the methods used in the
treatment of the latter problem (see Parzen [4] for references). The problem of
estimating the mode of a probability density function is somewhat similar to the
problem of maximum likelihood estimation of a parameter; the methods em-
ployed here are inspired by the methods used in the treatment of the latter prob-
lem (see Le Cam [2] for references).

1. A class of estimates of the probability density function. Let X; , X», - -+ , X,
be independent random variables identically distributed as a random variable X
whose distribution function F(z) = P[X = z] is absolutely continuous,

(11) Flo) = [ 5 o,
with probability density function f(x).

As an estimate of the value F(x) of the distribution function at a given point
x, it is natural to take the sample distribution function
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