CONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND DEGREE POLYNOMIALS IN A NORMAL VECTOR

By C. G. KHATRI

University of Baroda, India¹

1. Introduction. We define a matrix, whose elements are second degree polynomials in a normal vector, as $\mathbf{XAX'} + \frac{1}{2}(\mathbf{LX'} + \mathbf{XL'}) + \mathbf{C}$, where \mathbf{L} is a matrix with p rows and n columns (denoted as $\mathbf{L} : p \times n$), $\mathbf{A} : n \times n$ and $\mathbf{C} : p \times p$ are symmetric matrices, and the columns of $\mathbf{X} : p \times n$ are independent p-variate normals with means as columns of $\mathbf{u} : p \times n$ and covariance matrix $\mathbf{V} : p \times p$. In this paper, we establish the necessary and sufficient conditions for Wishartness and independence of such matrices. The results for $\mathbf{C} = \mathbf{0}$, $\mathbf{L} = \mathbf{0}$ have been established in [1, 3] and for p = 1 by R. G. Laha [4].

2. Certain lemmas.

LEMMA 1. Let $\mathbf{A}: n \times n$, $\mathbf{B}: n \times n$ be symmetric matrices, and suppose that $\mathbf{L}: p \times n$ and $\mathbf{M}: p \times n$ are matrices such that t = rank of $(\mathbf{A} \ \mathbf{L}')$, u = rank of $(\mathbf{B} \ \mathbf{M}')$, $\mathbf{AB} = \mathbf{0}$, $\mathbf{LB} = \mathbf{MA} = \mathbf{0}$ and $\mathbf{LM}' = \mathbf{0}$. Then, there exists a semi-orthogonal matrix $\mathbf{Q}: n \times (t + u)$, $(t + u \leq n)$, such that $\mathbf{L} = (\mathbf{T} \ \mathbf{0}) \mathbf{Q}'$, $\mathbf{M} = (\mathbf{0} \ \mathbf{U}) \mathbf{Q}'$,

$$A = Q \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} Q' \quad \text{and} \quad B = Q \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix} \! Q',$$

where $\mathbf{E}:t\times t$, $\mathbf{F}:u\times u$ are symmetric matrices, $\mathbf{T}:p\times t$, $\mathbf{U}:p\times u$ and the form of the null matrix $\mathbf{0}$ is understood by its context.

Proof. Using the result (A.3.11) of [5], we can write

(2.1)
$$(A L') = Q_1 T_1 \text{ and } (B M') = Q_2 T_2,$$

where $Q_1: n \times t(t < n)$, $Q_2: n \times u(u < n)$ are semi-orthogonal matrices, $T_1 = (T_{11} \ T_{12})$ and $T_2 = (T_{21} \ T_{22})$ are of ranks t and u respectively, $T_{11}: t \times n$, $T_{12}: t \times p$, $T_{21}: u \times n$ and $T_{22}: u \times p$. Now by the given conditions, we have $T_1'Q_1'Q_2T_2 = 0$ and so

$$Q_1'Q_2 = 0.$$

Hence $Q = (Q_1 Q_2)$ is a semi-orthogonal matrix, and we can find $Q_3: n \times (n - t - u)$ such that $(Q Q_3)$ is an orthogonal matrix [5, (A.1.7)]. Using these results, we have from (2.1),

(2.3)
$$(Q_2 Q_3)'(A L') = 0$$
 and $(Q_1 Q_3)'(B M') = 0$.

Moreover, from (2.1) we can write $\mathbf{L} = (\mathbf{T}'_{12} \ \mathbf{0}) \mathbf{Q}'$, $\mathbf{M} = (\mathbf{0} \ \mathbf{T}'_{22}) \mathbf{Q}'$ and $\mathbf{Q}'_{1}\mathbf{A}\mathbf{Q}_{1} = \mathbf{T}_{11}\mathbf{Q}_{1} = \mathbf{E} \text{ (say)}$, $\mathbf{Q}'_{2}\mathbf{B}\mathbf{Q}_{2} = \mathbf{T}_{21}\mathbf{Q}_{2} = \mathbf{F} \text{ (say)}$ as symmetric matrices. With the help of (2.3), we can write \mathbf{A} and \mathbf{B} as mentioned in Lemma 1.

LEMMA 2. If the columns of $X: p \times n$ are independent p-variate normals with

Received April 5, 1960; revised December 8, 1961.

¹Present address: School of Social Sciences, Grujarat University, Ahmedabad 9, India.