MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS

By Teh Tjoe-Tie

Catholic University of Louvain

1. Introduction. Conditionally compact sets in minimax theorems were first considered by A. Wald [2]: Let K(x, y) be a real-valued bounded function defined on the product of two arbitrary sets X and Y. The distances

$$d(x_1, x_2) = \sup_{Y} |K(x_1, y) - K(x_2, y)| \quad \text{for } x_1, x_2 \in X$$

$$d(y_1, y_2) = \sup_{X} |K(x, y_1) - K(x, y_2)| \quad \text{for } y_1, y_2 \in Y$$

define metric topologies for X and Y respectively which will be referred tos a the *intrinsic* topologies or, briefly, the (I)-topologies for X and Y with respect to the function K. In general these topologies are pseudo-metric only, but we assume that a reduction to equivalent classes has made them properly metric.

Now let P be the set of all probability measures p on \mathcal{G}_X , i.e. the σ -algebra, generated by the (I)-open sets in X. Similarly, Q is the set of all probability measures q on \mathcal{G}_Y , the σ -algebra, generated by the (I)-open sets in Y. Then, if $K(p,q) = \int K(x,y) dp(x) \times dq(y)$, we have [2]:

THEOREM 1.1. If one of the spaces X and Y is (I)-conditionally compact, then both spaces are (I)-conditionally compact and $\sup_P \inf_Q K(p, q) = \inf_Q \sup_P K(p, q)$.

A metric space is said to be conditionally compact if and only if, given any $\epsilon > 0$, there exists a finite subset $\{x_1, \dots, x_n\}$ of X such that the class of spheres $S(x_i, \epsilon) = \{x : d(x, x_i) \leq \epsilon\}$ $(i = 1, \dots, n)$ is a covering for X.

A concept which is equivalent to (I)-conditionally compactness is that of almost periodic functions defined as follows [1]: A real-valued bounded function K(p, q) defined on the product of two sets P and Q is left almost periodic if and only if, given $\epsilon > 0$, there exists a finite subset $\{p_1, \dots, p_n\}$ of P such that for any $p \in P$ there is some p_i , $1 \le i \le n$, for which $|K(p, q) - K(p_i, q)| \le \epsilon$, for all $q \in Q$.

An analogous definition holds for *right almost periodicity*. Obviously, right almost periodicity follows from left almost periodicity, and vice versa.

The following definitions are due to Ky Fan [1]: A real-valued function K(p,q) is said to be *concave-like* in p if and only if, given any $t \in [0,1]$ and any p_1 , $p_2 \in P$, there exists $p_0 \in P$ such that the inequality $tK(p_1,q) + (1-t)K(p_2,q) \le K(p_0,q)$ holds for all $q \in Q$.

K(p, q) is said to be *convex-like* in q if and only if, given any $t \, \varepsilon \, [0, 1]$ and any q_1 , $q_2 \, \varepsilon \, Q$ there exists $q_0 \, \varepsilon \, Q$ such that the inequality $tK(p, q_1) + (1 - t)K(p, q_2) \geq K(p, q_0)$ holds for all $p \, \varepsilon \, P$.

K(p, q) is concave-convex-like if it is concave-like in p and convex-like in q.

Received December 17, 1962; revised June 11, 1963.