A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY¹

By J. H. B. KEMPERMAN

University of Rochester

1. Introduction. Let $\{z_n, n \geq 0\}$ be a process of independent increments such that the increment $z_{n+h} - z_n$ has its distribution independent of n. Here, n and h run either through the nonnegative integers (discrete case) or through the nonnegative real numbers (continuous case). In the continuous case, the process $\{z_n\}$ is assumed to be separable, normalized in such a way that the sample functions are continuous to the right. Thus, in both cases the process is Markovian. One has

 $E(e^{sz_n}) = E(e^{sz_0})E(e^{s(z_1-z_0)})^n = \hat{\sigma}(s)e^{n\theta(s)}$

say. Let γ and v be real and fixed such that $\theta(\gamma) < v < \infty$. We shall be interested in finding explicit formulae for the generating functions

$$Q_1 = E(\{z_{N+0} \le 0\} \exp[sz_{N+0} - vN]), \qquad Q_2 = E(\{z_{N+0} \ge c\} \exp[sz_{N+0} - vN]).$$

Here, $N = \inf \{n: z_n \, \varepsilon \, [0, \, c]\}$, while c denotes a fixed positive number. Further, s denotes a variable complex number with Re $(s) = \gamma$. In the discrete case, we shall usually write $e^{-v} = t$ and $e^{\theta(s)} = \varphi(s)$, thus, $\varphi(\gamma) < t^{-1}$.

As will be shown, such explicit formulae can be found in a large number of important special cases, where the *downward* jumps of the process $\{z_n\}$ are of such a simple type that the function $Q_1(s)$ is a priori known up to a finite number of parameters a_1, \dots, a_r , (each depending on v or t but not on s).

In order to determine these parameters, we consider

$$Q_0(s) = \sum_{n=0}^{\infty} t^n E(e^{sz_n} \{N > n\})$$

in the discrete case, and $Q_0(s) = \int_0^\infty e^{-vn} E(e^{sz_n} \{N > n\}) dn$ in the continuous case.

If B is a given Borel subset of the reals we denote by M(B) the class of all complex-valued regular Borel measures μ supported by B such that the integral

$$\hat{\mu}(s) = \int_{-\infty}^{+\infty} e^{sy} \mu(dy),$$
 Re $(s) = \gamma,$

is absolutely convergent. The corresponding class of transforms $\hat{\mu}$ is denoted as $\hat{M}(B)$. Note that $Q_0 = \hat{\eta}$, where $\eta(D) = \sum_{n=0}^{\infty} t^n \Pr(z_n \, \varepsilon \, D, \, N > n)$ in the discrete case, similarly for the continuous case. Because N > n implies $0 \le z_n \le c$, we have that the measure η is supported by the interval [0, c], in other words $Q_0 \, \varepsilon \, \hat{M}([0, c])$.

Received March 5, 1963.

¹ This work was supported in part by the National Science Foundation Grant G-24470.