BAYESIAN BIO-ASSAY!
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1. Introduction. The basic bio-assay problem can be stated as follows. Let F be
a distribution function and let ¥ = (Yy, ---, Y;) be a set of k independent
random variables, each of which is binomial with parameters (n;, F(¢;)). The
numbers ¢, - - -, & are called dosage levels. The experimenter knows the n; and
the t;, can observe Y and wants to make some inference about F.

The approach we discuss here is Bayesian, that is ' is random and the dis-
tribution of Y just described is taken to be the conditional, given F, distribution
of Y.

In the following sections a characterization of the class of all (a priori) dis-
tributions for F is given, the corresponding Bayes’ estimates for a class of loss
functions are found and the results of LeCam [5] are applied to show complete-
ness of the closure of this class of estimates for a certain topology. A special case
is given for which the estimates are explicitly computed.

2. A priori distributions for F. The set of distribution functions, F, is often
taken to be a parametric family. In such a case an a priori distribution can be
given for the parameters. It is, however, possible to be completely general.
Namely let D = {d} be a countable dense subset of the real line, and let a
sequence of probability laws £[F(dy)], L[F(dz) | F(dy)], - -+, L[F(dn) | F(dy),
-+« , F(dn,2)], - - - be given such that P(F, on D, is a distribution function) = 1.
Then, defining for 2o 2 D, F (%) = lim,»s} zep F (), defines P for F with P(F is a
distribution function) = 1. It is clear that this construction yields a separable
process and, also, that any process that produces, with probability one, dis-
tribution functions will have such a separable representation.

The above given construction specifies an a priori distribution for F by giving
the joint distribution of the ordinates of F at certain fixed abcissa. Another way
to specify a distribution for F is to give, consistently, the joint distribution of the
percentiles of F.

3. The loss functions. The loss functions we wish to consider are the following,.
Let W () be an arbitrary (fixed) distribution function. If @, a non-decreasing
bounded between 0 and 1 function on the real line, is the statistician’s decision
and F the distribution determining the distribution of Y, then the loss
L(F,G) = [ (F — G)*dW. For this loss the Bayes’ estimate is the conditional,
given Y, expectation of the process. The proof follows immediately from the
usual pointwise (in Y') construction of Bayes’ procedures.
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