## **NOTES**

## MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC PROGRAMMING<sup>1</sup>

By DAVID BLACKWELL

University of California, Berkeley

Given three sets X, Y, A and a bounded function u on  $Y \times A$ , suppose that we are to observe a point  $(x, y) \in X \times Y$  and then select any point a we please from A, after which we receive an income u(y, a). In trying to maximize our income, is there any point to letting our choice of a depend on x as well as on y? We shall give a formalization to this question in which sometimes there is a point. If (x, y) is selected according to a known distribution Q, however, we show that dependence on x is pointless, and apply the result to obtain memoryless strategies in finite-stage dynamic programming problems.

We suppose that X, Y, A are Borel sets in Euclidean spaces and that u is bounded and Borel measurable. A strategy  $\sigma$  is a Borel measurable map of  $X \times Y$  into A:  $\sigma(x, y)$  is the a selected by  $\sigma$  when (x, y) is observed. The income from  $\sigma$  is the function  $I_{\sigma}$  on  $X \times Y$ :  $I_{\sigma}(x, y) = u(y, \sigma(x, y))$ . A memoryless strategy  $\tau$  is a Borel measurable function from Y into A; its income is  $I_{\tau}(x, y) = u(y, \tau(y))$ .  $I_{\tau}$  is defined on  $X \times Y$ , but depends on y only.

Question 1. Given any  $\sigma$ , is there a  $\tau$  with  $I_{\tau} \geq I_{\sigma}$  for all (x, y)?

If A is finite, the answer is clearly yes: define  $v(y) = \max_{\alpha} u(y, \alpha)$  and choose  $\tau$  so that  $u(y, \tau(y)) = v(y)$ . Then, for any  $\sigma$ ,  $I_{\sigma}(x, y) \leq v(y) = I_{\tau}(x, y)$ .

If A is countable, the answer is no, in an uninteresting  $\epsilon$  sense. Here is an example:  $X = \{1 - 1/n, n = 1, 2, \dots\}, Y = \{0\}, A = X$ , and u(y, a) = a. The  $\sigma$  with  $\sigma(x, y) = x$  has  $I_{\sigma}(x, 0) = x$ , so that  $\sup_{x} I_{\sigma}(x, 0) = 1$ . For any  $\tau$ ,  $I_{\tau} \equiv \tau(0) < 1$ , so that there is an x with  $I_{\sigma}(x, 0) > I_{\tau}(x, 0)$ . But for countable A, given any  $\epsilon > 0$  (where  $\epsilon$  can even be a Borel measurable function of y), there is a  $\tau$  such that, for any  $\sigma$ ,  $I_{\tau} > I_{\sigma} - \epsilon$  for all (x, y): put  $v(y) = \sup_{x} u(y, a)$  and choose  $\tau$  so that  $u(y, \tau(y)) > v(y) - \epsilon$ .

Question 2. Given any  $\sigma$  and any  $\epsilon > 0$ , is there a  $\tau$  with  $I_{\tau} > I_{\sigma} - \epsilon$  for all (x, y)? Section 2.16 of [2] implies an affirmative answer with certain additional not very restrictive hypotheses. But here is an example where the answer is no. X is a Borel subset of the unit square  $R \times S$  whose projection D on R is not a Borel set. Y = A = unit interval, and u is the indicator of X:

$$u(y, a) = 1,$$
 if  $(y, a) \in X,$   
= 0, if  $(y, a) \notin X.$ 

For the strategy  $\sigma$ :  $\sigma(x, y) = s$  for x = (r, s), we have  $I_{\sigma}((r, s), r) = u(r, s) = 1$ , so that  $I_{\sigma}$  is 1 on the subset F of  $X \times Y$  consisting of all points ((r, s), y) with y = r. But for any  $\tau$ ,  $I_{\tau}(x, y) = u(y, \tau(y))$ . The projection of  $G = \{(x, y): I_{\tau}(x, y) = 1\}$  on Y is just the y-set  $\{u(y, \tau(y)) = 1\}$ , which is a Borel subset

Received 18 September 1963; revised 17 December 1963.

www.jstor.org

<sup>&</sup>lt;sup>1</sup> Prepared with the partial support of the National Science Foundation, Grant GP-10.