NOTE ON ESTIMATING ORDERED PARAMETERS

By Ester Samuel

Hebrew University

1. Introduction. We consider the problem of estimating a set of k real valued parameters, $\mathbf{0} = (\theta_1, \dots, \theta_k)$ where $\theta_i \in S$, $i = 1, \dots, k$. Let \mathbf{X} be the (usually vector valued) random variable with values \mathbf{x} , the distribution of which depends upon $\mathbf{0}$ and let $\mathbf{\delta} = \mathbf{\delta}(\mathbf{X}) = (\delta_1(\mathbf{X}), \dots, \delta_k(\mathbf{X}))$ be an estimator of $\mathbf{0}$. Since $\mathbf{0}$ is known to belong to S^k , the k-fold Cartesian product of S, we shall restrict $\mathbf{\delta}$ to belong to S^k with probability one.

We assume that the loss incurred by saying δ when the parameter is θ is

(1)
$$L(\boldsymbol{\delta}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \phi(|\boldsymbol{\delta}_i - \boldsymbol{\theta}_i|)$$

where $\phi(t)$, $t \ge 0$, is a monotone increasing function.

The problem described above is usually called an estimation problem only if S is an interval. We shall however not put any restrictions on S except (to avoid trivialities) that it contains at least two elements. Thus, e.g., when S is finite we consider what is usually called a multidecision problem. We shall also allow randomized procedures, but in order not to complicate the notation we shall not introduce a special notation when δ is randomized. Thus, in what follows, δ should be interpreted to be the value of the estimator after the randomization experiment has been carried out.

Suppose now that θ is known to belong to Ω , a subset of S^k . Is it then necessary for δ to belong to Ω in order for δ to be admissible? That is, must

(2)
$$P(\delta \varepsilon \Omega; \theta) = 1$$
 for every $\theta \varepsilon \Omega$

in order for δ to be admissible?

In this generality, the answer is known to be in the negative. Robbins in [2] considers the (nonsequential) compound decision problem where for $i=1, \dots, k$ one has observations X_i from a normal population with variance 1 and mean, $\theta_i \in \{-1, 1\}$, and the X_i 's are independent. Thus here $\mathbf{X} = (X_1, \dots, X_k)$, and S^k contains 2^k points. The only values of $\phi(t)$ of interest here are $\phi(0)$ and $\phi(2)$, which are taken to be 0 and 1 respectively. Suppose it is known that exactly one of the parameters θ_i equals 1 and the k-1 others equal -1. Thus Ω contains the k points having one coordinate +1 and the others -1. In [2], p. 138, it is shown that for k > 2 the Bayes rule δ with respect to the a priori distribution which assigns equal probability 1/k to each element of Ω takes the value $\delta = (-1, \dots, -1)$ with positive probability under every $\theta \in \Omega$, and hence clearly fails to satisfy (2). Since this Bayes rule is essentially unique the rule obtained certainly is admissible for the restricted problem of deciding on $\theta \in \Omega$. (This result is actually not too surprising. $\delta(\mathbf{x})$ takes the value $(-1, \dots, -1)$ when all x_i 's are nearly equal. In that case assigning the value +1 to some

Received 31 December 1963; revised 2 November 1964.

www.jstor.org

The Annals of Mathematical Statistics.