EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS1

By DAVID A. FREEDMAN

University of California, Berkeley

1. Introduction. W_0 {respectively, W_0' } and B_0 { B_0' } are positive real numbers, $\alpha \{\alpha'\}$ and $\beta \{\beta'\}$ non-negative real numbers with $\alpha + \beta > 0 \{\alpha' + \beta' > 0\}$. At time 0, urn $U\{U'\}$ contains $W_0\{W_0'\}$ white and $B_0\{B_0'\}$ black balls. At time n, a ball is drawn at random from $U\{U'\}$ and replaced, together with $\alpha\{\alpha'\}$ balls of the same color and β $\{\beta'\}$ of the opposite. If the nth draw from U $\{U'\}$ is white, $X_n\{X_n'\}$ is 1; otherwise, 0. The distribution of $X_1, X_2, \cdots \{X_1', X_2', \cdots\}$ is $D\{D'\}$, a probability on the space Ω of sequences of 0'r and 1's. Let $\rho=(\alpha-\beta)/2$ $(\alpha + \beta) \{ \rho' = (\alpha' - \beta')/(\alpha' + \beta') \}$. The object of this note is to prove (1) Theorem. $D \equiv D'$ or $D \perp D'$ according as $\rho = \rho'$ or $\rho \neq \rho'$.

If $\rho = \rho' = 1$, then (1) follows from De Finetti's theorem; if $\rho < \rho' = 1$, then (1) follows from Reference [2], Lemma 2.1 and Theorems 2.2, 3.1.

2. Generalities. Let \mathfrak{F}_n be the σ -field of subsets of Ω spanned by the first ncoordinates. If Π is a probability on Ω , let $\Pi(n+1,i)$ be the conditional Π -probability that the n+1st coordinate is i, given \mathfrak{F}_n . If $\omega \in \Omega$, let

$$(2) S_n(\omega) = \omega(1) + \cdots + \omega(n)$$

and

$$(3) E_n = n^{-1} S_n - \frac{1}{2}.$$

If $\rho < 1$, by [2],

(4)
$$E_n \to 0$$
 with *D*-probability 1.

Since

(5)
$$D(n+1,1) = [W_0 + \beta n + (\alpha - \beta)S_n]/[W_0 + B_0 + (\alpha + \beta)n],$$

it follows from (4) that when $\rho < 1$,

(6)
$$D(n, 1) \rightarrow \frac{1}{2}$$
 with *D*-probability 1.

This may help to motivate the next result.

Let P {respectively, P'} be the probability on the two-point set $\{0, 1\}$ assigning measure $p \{p'\}$ to 1. Let $\epsilon = p' - p$.

(7) Lemma. If p and p' converge to $\frac{1}{2}$, then the P-expectation of $\log (dP'/dP)$ is $-2\epsilon^2 + o(\epsilon^2)$, and the P-expectation of $(\log (dP'/dP))^2$ is $4\epsilon^2 + o(\epsilon^2)$.

Proof. Expand $\log (1 + u)$ in powers of u.

Received 19 July 1965; revised 30 August 1965.

¹ Partially supported by the National Science Foundation, Grant GP-2593; and by the Sloan Foundation.