## A THEOREM ON THE GALTON-WATSON PROCESS1

## BY BERNT P. STIGUM

## Cornell University

In this note we will prove a theorem concerning a limiting distribution associated with the Galton-Watson process. Specifically, we consider a stochastic process,  $\{Z_n : n = 0, 1, \dots\}$ , with the following properties:

- (1)  $Z_0 = 1$ ;
- (2) if P denotes the probability measure associated with the process, then  $P(Z_1 = i) = p_i$ ,  $i = 0, 1, \dots$ . Moreover the process is a Markoff process with transition probabilities,

$$P_{ij} = P(Z_{n+1} = j \mid Z_n = i) = \sum_{k_1 + k_2 + \dots + k_i = j} p_{k_1} \cdot p_{k_2} \cdot \dots \cdot p_{k_i},$$

$$i = 1, 2, \dots, j = 0, 1, \dots, P_{0j} = 0, j = 1, 2, \dots, \text{ and } P_{00} = 1;$$

- (3)  $p_i \neq 1$  for all i; and
- (4)  $E(Z_1) = m > 1$ .

We will show that the random variables,  $(Z_n/m^n)$ ,  $n=0,1,\cdots$ , converge a.e. to a random variable, W, whose probability distribution has a jump at the origin and a continuous density function on the set of positive real numbers. Levinson and Harris have proved similar theorems but under more restrictive assumptions and by using quite different arguments. Specifically, Levinson [4] by assuming that  $E(Z_1 \log Z_1) < \infty$  and Harris [3] by assuming that  $E(Z_1^2) < \infty$  have established our result. Harris has also proved that his assumptions imply convergence in the mean of the  $(Z_n/m^n)$ 's, and both Harris and Levinson have proved that their assumptions imply that E(W) = 1 and that P(W = 0) = q < 1, where q is a number to be defined later. In contrast under our assumptions we can only prove that  $E(W) \leq 1$  and that P(W = 0) = q or 1. However we will show in a forthcoming paper with Harry Kesten that if Assumptions 1 through 4 hold and if P(W = 0) = q, then E(W) = 1. Moreover E(W) = 1 only if  $E(Z_1 \log Z_1) < \infty$ .

The probability generating function of  $Z_1$  will be denoted f(s) and is defined by the equation,  $f(s) = \sum_{k=0}^{\infty} p_k s^k$ , on the set of all complex numbers s such that  $|s| \leq 1$ . The probability generating function of  $Z_n$  will be denoted by  $f_n(\cdot)$ . We will make repeated use of a few facts about the  $f_n(\cdot)$ 's that are stated briefly below.

- (5)  $f_{n+k}(s) = f_n(f_k(s)) = f_k(f_n(s)).$
- (6) There exists a unique real number q such that  $0 \le q < 1, f(q) = q$ .
- (7) For all  $s \in [q, 1)$  we have  $1 > s \ge f(s) \ge f_2(s) \ge \cdots \ge f_n(s) \ge q$  with

Received 22 November 1965.

<sup>&</sup>lt;sup>1</sup> Financial support for this research from the National Science Foundation is gratefully acknowledged.