NEGATIVE DYNAMIC PROGRAMMING1

By RALPH E. STRAUCH

University of California, Berkeley

1. Introduction. A dynamic programming problem is determined by four objects, S, A, q, and r. S and A are non-empty Borel sets, q is a regular conditional probability on S given $S \times A$, and r is a Baire function on $S \times A \times S$. We interpret S as the set of states of some system, and A as the set of actions available at each state. (The set of actions available is assumed to be independent of the state.) When the system is in state s and we take action a, we move to a new state s' selected according to $q(\cdot \mid s, a)$, and we receive a return r(s, a, s'). The process is then repeated from the new state s', and we wish to maximize the total expected return over the infinite future.

A policy π is a sequence π_1 , π_2 , \cdots , where π_n is a regular conditional probability on A given $h = (s_1, a_1, \dots, a_{n-1}, s_n)$, the history of the system up to the nth stage. Given that we have experienced history h up to the nth stage, we choose the nth action according to $\pi_n(\cdot \mid h)$. Certain types of policies are of special interest. A random semi-Markov policy is one in which π_n depends only on s_1 and s_n , and a random Markov policy is one in which π_n depends only on s_n . A non-random policy is one in which each π_n is degenerate, i.e. is a measurable function from histories to actions. A semi-Markov policy is a sequence f_1, f_2, \cdots , where each f_n is a measurable function from $S \times S$ to A, and $f_n(s_1, s_n)$ is the action we take at the nth stage if we start in state s_1 and the nth state is s_n . A $Markov \ policy$ is a sequence f_1 , f_2 , \cdots where each f_n is a measurable function from S to A and $f_n(s)$ is the action we choose at the nth stage if the nth state is s. (Notice that the term Markov policy and semi-Markov policy refer to non-random policies, and are modified by the adjective random if the elements of the policies are probability distributions.) A stationary policy is a Markov policy in which $f_n = f$ for some measurable f from S to A and all n.

If $\pi = \{f_1, f_2, \dots\}$ is a Markov policy, the function of g is π -generated if there exists a measurable partition S_1, S_2, \dots of S such that $g = f_n$ on S_n . A Markov policy $\pi' = \{g_1, g_2, \dots\}$ is π -generated if each g_n is π -generated.

Associated with each π is a Baire function on S, $I(\pi)(s)$, the total expected return starting from s and using π . This total return may well be infinite, or may be undefined. There are, however, three cases in which the problem is well defined, which may be described as follows:

(a) The discounted case. If the return function r is bounded, and we discount our future return with a discount factor β , $0 \le \beta < 1$, so that a return of one

871

Received 17 May 1965.

¹ This paper is the author's doctoral dissertation at the University of California, Berkeley, and was written with the partial support of a National Science Foundation Cooperative Graduate Fellowship, and the Office of Naval Research, contract NONR 222-43.

² Now at The RAND Corporation.