COMPARISON OF COMBINED ESTIMATORS IN BALANCED INCOMPLETE BLOCKS

By V. Seshadri

McGill University

- **0.** Introduction. In the analysis of Balanced Incomplete Block designs (BIB), there arise two independent estimates of treatment differences conventionally referred to as the intra-block and the inter-block estimates. Yates [4] showed that an inter-block analysis can be made for the BIB assuming that the block effects are random. He also devised a method for combining this additional information with the customary intra-block information so as to estimate the treatment differences with greater precision than if the intra-block information had been used alone. An alternative combined estimate has been suggested by Graybill and Weeks [1] and shown to be unbiased. In this paper we compare the two estimates and answer the question raised by Graybill and Weeks [1] as to which estimate is better in the sense of smaller variance.
- 1. Notations and assumptions. We refer the reader for a fuller discussion of the model to Graybill and Weeks [1], and state only those assumptions which pertain to the problem considered in this study.
- (i) The $(t-1) \times 1$ vector $U = (u_i)$ is normally distributed with mean $T = (t_i)$ and covariance matrix $(k/\lambda t)\sigma^2 I$, so that u_i (referred to as the intrablock estimate) is unbiased for t_i and has variance $(k/\lambda t)\sigma^2$.
- (ii) The $(t-1) \times 1$ vector $X = (x_i)$ is normally distributed with mean $T = (t_i)$ and covariance matrix $\{k(\sigma^2 + k\sigma_\beta^2)/(r \lambda)\}I$, so that x_i (referred to as the inter-block estimate) is unbiased for t_i and has variance $k(\sigma^2 + k\sigma_\beta^2)/(r \lambda)$.
- (iii) s_1^2/σ^2 has a chi-square distribution with f = (bk b t + 1) degrees of freedom.
- (iv) $s_2^2/(\sigma^2 + k\sigma_{\beta}^2)$ has a chi-square distribution with (b-t) degrees of freedom, where b > t.
 - (v) $u_1, u_2, \dots, u_{t-1}, x_1, x_2, \dots, x_{t-1}, s_1^2, s_2^2$ are all mutually independent. The following notations will be used in the paper.
 - (a) $E_x(\cdot)$ denotes the expectation of (\cdot) in the space of x.
 - (b) $E_{x|y,z}(\cdot)$ denotes the expectation of (\cdot) over fixed values of y and z.
 - (c) $E_{s_1^2,s_2^2,z_i}(\cdot)$ will be referred to by $E'(\cdot)$.
 - (d) $V(\cdot)$ denotes the variance of (\cdot) .
- (e) Yates' estimate is denoted by \bar{T}_i , and Graybill and Weeks' estimate by \hat{T}_i .
 - (f) P(x > a) denotes the probability that x > a.
 - 2. Statement of the problem. The object of the present study is to compare

Received 7 March 1966.