A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMILIES

By J. PFANZAGL

Universität zu Köln

Let α be a σ -algebra on an abstract set X. Let \mathcal{O}/α be an ordered family of p-measures which is dominated by a σ -finite measure μ/α . Let p be a density of $P \in \mathcal{O}$ with respect to μ . \mathcal{O} is said to have monotone likelihood ratios, if there exists an α -measurable map $T: X \to R$, defined \mathcal{O} -a.e., such that for each pair P', $P'' \in \mathcal{O}$ with P' < P'' there exists a nondecreasing function $H_{P'P'}: R \to \bar{R}$ such that

(1)
$$p''(x)/p'(x) = H_{P'P''}(T(x)) \qquad \mu\text{-a.e.},$$

whenever p''(x)/p'(x) is defined.

In this formulation, the μ -null set on which (1) is violated depends on P', P''. The purpose of this note is to show that for MLR-families the densities can always be chosen such that (1) holds except on a fixed μ -null set. This leads to a simplification in many proofs connected with MLR-families, (e.g. those connected with the theory of uniformly most powerful tests).

LEMMA. If $\mathfrak O$ is a MLR-family there exists a dominating σ -finite measure μ_0 and a coherent system of densities with respect to μ_0 , such that for each pair P', $P'' \in \mathfrak O$ with P' < P'' the ratio p''(x)/p'(x) is a nondecreasing function of T(x) with the exception of a fixed μ_0 -null set. In other words: There exists a subset $X_0 \subset X$ such that $P(X_0) = 1$ for all $P \in \mathfrak O$ and such that p''(x)/p'(x) is a nondecreasing function of T(x) for all $x \in X_0$ for which this ratio is defined.

PROOF. As \mathcal{O}/\mathcal{C} is dominated by a σ -finite measure μ/\mathcal{C} , according to the lemma of Halmos and Savage (see Lehmann, p. 354, Theorem 2), there exists a σ -finite measure $\mu_0 = \sum_{n=1} c_n \cdot P_n$, $P_n \in \mathcal{O}_0$, which is equivalent to \mathcal{O} . The densities of P/\mathcal{C} with respect to μ_0/\mathcal{C} can be assumed to depend on x only through T(x) (Lehmann, p. 48, Theorem 8). Hence for the following proof we might change the p-space: instead of $(X, \mathcal{C}, \mathcal{O})$ we will consider $(\mathcal{C}, \mathcal{C}, \mathcal{C})$, where \mathcal{C} is the Borelalgebra on \mathcal{C} and \mathcal{C}/\mathcal{C} is the family of p-measures induced by \mathcal{C}/\mathcal{C} through T (i. e., $Q(B) = P(T^{-1}B)$). Let ν_0/\mathcal{C} be the p-measure induced by μ_0/\mathcal{C} . Then ν_0/\mathcal{C} is equivalent to \mathcal{C}/\mathcal{C} . If q(t) is a density of Q/\mathcal{C} with respect to ν_0/\mathcal{C} , p(x) := q(T(x)) is a density of P/\mathcal{C} with respect to μ_0/\mathcal{C} .

As $\mathfrak B$ is separable, $\mathbb Q/\mathfrak B$ is separable with respect to uniform convergence, i. e., there exists a countable subset $\mathbb Q_0 \subset \mathbb Q$ such that for each $Q \in \mathbb Q$ there exists a sequence $(Q_n)_{n=1,2,...}$ with $Q_n \in \mathbb Q_0$ such that $Q_n(B) \to Q(B)$ uniformly in $B \in \mathfrak B$. (See Lehmann, p. 352, Theorem 1.)

For each $Q \in \mathbb{Q}_0$, we fix a version, say q, of $dQ/d\nu_0$. For convenience we choose

Received 8 August 1966.