AN OSCILLATING SEMIGROUP

By David A. Freedman

University of California, Berkeley

- **1.** Introduction. Let I be a countably infinite set. For each $t \ge 0$, let $P(t) = \{P(t,i,j)\}$ be a stochastic matrix on I, such that P(t+s) = P(t)P(s), P(0) is the identity matrix, and $P(t) \to P(0)$ coordinatewise at $t \to 0$. Then P is called a standard stochastic semigroup on I. As is well known, P has a coordinatewise derivative Q at Q. However, many elements of Q may vanish. In view of this, Q. L. E. Dubins asked me whether Q(t,i,j)/P(t,i,k) converged as $t \to 0$. The object of this note is to provide a counterexample.
- (1) Theorem. There is a countable set I, with elements 0, 1, 2 and a standard stochastic semigroup P on I, satisfying

(2)
$$\lim \sup_{t \to 0} P(t, 0, 1) / P(t, 0, 2) = \infty$$
$$\lim \inf_{t \to 0} P(t, 0, 1) / P(t, 0, 2) = 0.$$

Moreover, there is a Markov chain with stationary transitions P, starting from 0, all of whose sample functions are step functions. In particular, all elements of Q are finite.

The construction is given in Section 2, two preliminary facts in Section 3, and the verification in Section 4. Section 5 contains some technical remarks.

2. Construction. The state space I consists of 0, 1, 2, (1, n, m) and (2, n, m) for positive integer n and $m = 1, \dots, f(n)$. Here f(n) is positive integer to be chosen later. Think of it as large.

Let $0 < q_{n,m} < \infty$, and let

(3)
$$c_n = \sum_{m=1}^{f(n)} q_{n,m}^{-1}.$$

The $q_{n,m}$ will be chosen later. Think of them as very large. Let $a_n > 0$, $b_n > 0$, $\sum_{n=1}^{\infty} (a_n + b_n) = 1$,

(4)
$$a_{n+1} + a_{n+2} + \cdots = o(a_n),$$
$$b_{n+1} + b_{n+2} + \cdots = o(b_n),$$

(5)
$$\lim \sup_{n\to\infty} a_n/b_n = \infty, \qquad \lim \inf_{n\to\infty} a_n/b_n = 0.$$

Let τ_0 be exponential with parameter 1, and $\tau_{n,m}$ exponential with parameter $q_{n,m}$, for $n=1,2,\cdots,m=1,\cdots,f(n)$, all independent. In particular,

$$P(\tau_{n,m} \ge t) = e^{-q_{n,m}t}$$
 for $t \ge 0$.

Received August 9, 1966.

¹ This paper has been partially supported by the National Science Foundation, Grant GP-2593, and by a Sloan Foundation Grant.