SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES II. NON-CENTRAL CASE

By Samuel Kotz¹, N. L. Johnson² and D. W. Boyd³

University of Toronto, University of North Carolina and University of Alberta

This paper is a direct continuation of Part I. [5] Equation numbers continue from those of the earlier paper.

We recall that

- (i) $f_n(\alpha; \delta; y)$ is the probability density function of $\sum_{i=1}^n \alpha_i (Z_i + \delta_i)^2$ where Z_1, Z_2, \dots, Z_n are mutually independent standardized normal variables, and $F_n(\alpha; \delta; y)$ is the corresponding cumulative distribution function.
- (ii) $f(n; \lambda; y) = f_n(\mathbf{1}; \mathbf{\delta}; y)$ with $\lambda = \sum_{i=1}^n \delta_i^2$ is the non-central χ^2 probability density function with n degrees of freedom and non-centrality parameter λ , and $F(n; \lambda; y)$ the corresponding cumulative distribution function.
- (iii) g(n; y) = f(n; 0; y) is the central χ^2 probability density function, and G(n; y) the corresponding cumulative distribution function.

In this paper we seek expansion for $f_n(\alpha; \delta; y)$ in each of the following forms:

(101)
$$f_n(\alpha; \delta; y) = \sum_{k=0}^{\infty} a_k^P (-1)^k (y/2)^{n/2+k-1} / 2\Gamma(n/2+k)$$
 (Power Series).

(102)
$$f_n(\alpha; \delta; y) = \sum_{k=0}^{\infty} a_k^L g(n; y/\beta) [k! \Gamma(n/2)/\beta \Gamma(n/2+k)] L_k^{(n/2-1)}(y/2\beta)$$

(Laguerre Series).

(See (19) and (20) for definition of
$$L_k^{(n/2-1)}$$
.)

(103)
$$f_n(\alpha; \delta; y) = \sum_{k=0}^{\infty} a_k^c \beta^{-1} g(n + 2k; y/\beta)$$
 (Chi-squared Series).

(104)
$$f_n(\alpha; \delta; y) = \sum_{k=0}^{\infty} a_k^{c'} \beta^{-1} f(n+2k; \lambda; y/\beta)$$

(Non-central Chi-squared Series).

We now restrict ourselves to the positive definite forms with $\alpha_r > 0$. The general methods used are almost identical to those described in the introduction to Part I with $g_n(\alpha; y)$ replaced by $f_n(\alpha; \delta; y)$. Briefly, we first find the Laplace transform of $f_n(\alpha; \delta; y)$ which is

(105)
$$L_n(\alpha; \delta; s) = \int_0^\infty e^{-sy} f_n(\alpha; \delta; y) \, dy$$

= $\exp\left(-\sum_{r=1}^n \delta_r^2 \alpha_r^s / (1 + 2s\alpha_r)\right) \cdot \prod_{j=1}^n (1 + 2s\alpha_j)^{-\frac{1}{2}}$.

We seek an expansion

(106)
$$f_n(\alpha; \delta; y) = \sum_{k=0}^{\infty} a_k h_k(y),$$

Received 8 July 1966; revised 2 December 1966.

¹ Supported by the Air Force Office of Scientific Research, Grant AF-AFOSR-1009-66.

^{*} ² Supported by the Air Force Office of Scientific Research, Grant AF-AFOSR-760-65.

³ Supported by the Air Force Office of Scientific Research, Grant AF-AFOSR-1009-66.
838