ESTIMATION ASSOCIATED WITH LINEAR DISCRIMINANTS

By SEYMOUR GEISSER

State University of New York at Buffalo

1. Introduction. Suppose we have two p-variate normal populations where Π_1 is $N(\mu_1, \Sigma)$ and Π_2 is $N(\mu_2, \Sigma)$ and sample estimates \bar{x}_1 of μ_1 , \bar{x}_2 of μ_2 based on n_1 and n_2 observations respectively. Further assume we have an independent estimate S of the common covariance matrix Σ based on ν degrees of freedom i.e., νS is Wishart, $W(\Sigma, \nu)$ and $\nu = n_1 + n_2 - 2$ if all the information on Σ is supplied by the two samples. Now the samples provide us with a linear discriminant, Anderson [1], page 138,

$$(1.1) V = [z - \frac{1}{2}(\bar{x}_1 + \bar{x}_2)]' S^{-1}(\bar{x}_1 - \bar{x}_2)$$

as an estimate of the population discriminant

$$(1.2) U = \left[z - \frac{1}{2}(\mu_1 + \mu_2)\right]' \Sigma^{-1}(\mu_1 - \mu_2)$$

where the new observation z has prior probability q_1 of being from Π_1 and q_2 from Π_2 , $q_1 + q_2 = 1$. For $r = q_2/q_1$,

(1.3)
$$U > \log r$$
 assigns z to Π_1 , $U < \log r$ assigns z to Π_2 ;

or if μ_1 , μ_2 and Σ are unknown

(1.4)
$$V > \log r$$
 assigns z to Π_1 , $V < \log r$ assigns z to Π_2 .

There are then three questions that naturally arise here. Firstly, the estimation of the population discriminant U. Secondly the estimation of the true errors of misclassification, ϵ_1 and ϵ_2 ; and lastly, though most importantly, the estimation of the "index" errors of misclassification, β_1 and β_2 i.e., the errors incurred in using the sample discriminant V on future observations. These problems will be investigated by the Bayes approach previously outlined by the author [4], [5], [6], [7]. In essence it is asserted that in the absence of any prior objective knowledge on μ_1 , μ_2 and Σ it is convenient to assume that the prior density for these parameters may be represented by

(1.5)
$$g(\mu_1, \mu_2, \Sigma^{-1}) \propto |\Sigma|^{(p+1)/2}$$

This leads to

(1.6)
$$P(\mu_1, \mu_2, \Sigma^{-1}) \propto |\Sigma^{-1}|^{(\nu-p+1)/2}$$

$$\cdot \exp \left\{ -\frac{1}{2} \operatorname{tr} \Sigma^{-1} [\nu S + n_1 (\bar{x}_1 - \mu_1) (\bar{x}_1 - \mu_1)' + n_2 (\bar{x}_2 - \mu_2) (\bar{x}_2 - \mu_2)'] \right\}$$

Received 25 February 1966; revised 9 January 1967.

¹ This research was supported in part by NIGMS-NIH Grant 1 R01 GM 14031-01.