BOUNDED EXPECTED UTILITY

By Peter C. Fishburn

Research Analysis Corporation, McLean, Virginia

- 1. Introduction. The Blackwell-Girshick utility axioms [1], pp. 104–110, apply a preference-indifference relation \leq ("is not preferred to") to the set \mathcal{O}_d of all discrete probability distributions defined on a set of consequences X. More precisely, with reference to a σ -algebra on X that contains $\{x\}$ for each $x \in X$, \mathcal{O}_d is the set of all countably additive measures on the σ -algebra such that P(A) = 1 for some countable set A in the σ -algebra. The first purpose of this paper is to show that the Blackwell-Girshick utility theorem, which can be viewed as an extension of the standard von Neumann-Morgenstern result [3], can be obtained even on weakening their (B-G) denumerable "sure-thing" axiom. The second purpose is to show that versions of the new axiom, which is related to Savage's P(2), p. 77, can be used in deriving the expected-utility property for other sets of probability measures on X, including general σ -additive measures and finitely-additive measures. Bounded utilities result in all cases considered except for the case where all distributions are simple.
- 2. The von Neumann-Morgenstern theory. The von Neumann-Morgenstern expected-utility theory serves as the base of our discussion.

Let $\bar{\alpha} = (1 - \alpha)$ when $\alpha \varepsilon [0, 1]$. An abstract convex set is a set $\mathfrak{O} = \{P, Q, R, \dots\}$ and an operation $\alpha P + \bar{\alpha} Q$ associating an element of \mathfrak{O} with each fraction in [0, 1] and each ordered pair of elements of \mathfrak{O} , such that if P, Q, $R \varepsilon \mathfrak{O}$ and $\alpha, \beta \varepsilon [0, 1]$ then

- 1. 1P + 0Q = P,
- $2. \ \alpha P + \bar{\alpha} Q = \bar{\alpha} Q + \alpha P,$

3.
$$\alpha(\beta P + \bar{\beta}Q) + \bar{\alpha}Q = \alpha\beta P + (1 - \alpha\beta)Q$$
.

With \leq a binary relation on \mathcal{O} , let $P < Q \Leftrightarrow [P \leq Q \text{ and not } Q \leq P]$, and $P \sim Q \Leftrightarrow [P \leq Q \text{ and } Q \leq P]$. \leq on \mathcal{O} is a *weak order* if it is transitive and strongly connected $(P, Q \varepsilon \mathcal{O} \Rightarrow P \leq Q \text{ or } Q \leq P)$.

The following axioms and theorem (proofs in [3], Appendix, and [2], Chapter 5) form the core of the theory. In all cases P, Q, $R \in \mathcal{O}$.

Axiom 0. O is an abstract convex set.

Axiom 1. \leq on \circ is a weak order.

AXIOM 2.
$$[P \sim (\preceq)Q, \alpha \varepsilon (0, 1)] \Rightarrow \alpha P + \bar{\alpha}R \sim (\preceq)\alpha Q + \bar{\alpha}R$$
.

AXIOM 3. $[P < Q, Q < R] \Rightarrow \alpha P + \bar{\alpha}R < Q \text{ and } Q < \beta P + \bar{\beta}R \text{ for some } \alpha, \beta \in (0, 1).$

THEOREM 1. [Axioms 0, 1, 2, 3] \Rightarrow there is a real function u on \mathfrak{G} such that if $P, Q \in \mathfrak{G}$ and $\alpha \in [0, 1]$ then

$$(1) u(P) \le u(Q) \Leftrightarrow P \le Q,$$

(2)
$$u(\alpha P + \bar{\alpha}Q) = \alpha u(P) + \bar{\alpha}u(Q).$$

Received 4 March 1965; revised 24 January 1966.