ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES

By N. GIRI

Indian Institute of Technology, Kanpur

0. Introduction. Let $X=(X_1,\cdots,X_p)',\ Y=(Y_1,\cdots,Y_p)'$ be independently and normally distributed column vectors with unknown means $\xi=(\xi_1,\cdots,\xi_p)',\ \eta=(\eta_1,\cdots,\eta_p)'$ and unknown positive definite covariance matrices Σ_1 , Σ_2 respectively. We are interested here to test the null hypothesis $H_0:\Sigma_1=\Sigma_2$. This problem remains invariant under the group G of affine transformations (linear transformations together with translations) of the form $X\to AX+b_1$, $Y\to AY+b_2$ where A is a $p\times p$ non-singular matrix and b_1 , b_2 are p-dimensional column vectors. Let X_1,\cdots,X_{N_1} be the samples of sizes N_1 and N_2 from X, Y respectively. Writing

$$\begin{split} & \bar{X} = \sum_{1}^{N_1} X_i / N_1 \,, \qquad \bar{Y} = \sum_{1}^{N_2} Y_i / N_2 \,, \\ & S_1 = \sum_{1}^{N_1} (X_i - \bar{X}) (X_i - \bar{X})' \quad \text{and} \quad S_2 = \sum_{1}^{N_2} (Y_i - \bar{Y}) (Y_i - \bar{Y})'; \end{split}$$

a set of maximal invariants in the sample space with respect to G (with sufficiency and invariance reduction in either order, see Hall, Wijsman and Ghosh (1965)), is R_1, \dots, R_p , the characteristic roots of $S_1S_2^{-1}$. The corresponding set of maximal invariants in the parametric space under G is $\theta_1, \dots, \theta_p$, the characteristic roots of $\Sigma_1\Sigma_2^{-1}$. In terms of maximal invariants our testing problem can be reduced to that of testing the null hypothesis:

$$(0.1) H_0: \theta_1 = \cdots = \theta_n = 1$$

We will consider here the following alternative.

$$(0.2) H_1: \sum_{i=1}^{p} \theta_i > p.$$

The dual alternative $\sum_{i=1}^{p} \theta_{i} < p$ is reduced to (0.2) by interchanging the roles of the X's and Y's.

For this problem several invariant tests are known to us (i) a test based on $|S_2|/|S_1|$, (ii) a test based on tr $S_1S_2^{-1}$, (iii) Roy's test based on the largest and the smallest characteristic roots of $S_1S_2^{-1}$, (iv) Kiefer and Schwartz's test (1965) based on $|S_1 + S_2|/|S_2|$.

From Anderson and Das Gupta (1964) it follows that the power of each of the above tests for testing H_0 against H_1 is a monotonically increasing function of each θ_i . Kiefer and Schwartz's test is admissible for this problem. We will suggest here another test based on tr $S_2(S_1 + S_2)^{-1}$ which is locally best invariant.

1. Locally best invariant test. Let \mathfrak{X} be the space of maximal invariant R in the sample space and Ω be the space of corresponding maximal invariant θ in

Received 11 January 1966; revised 12 September 1967.