ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Central Regional meeting, East Lansing, Michigan, March 18-20, 1968.)

2. Distribution of linear combination of order statistics from the rectangular population. M. M. Ali, University of Western Ontario.

Let $X_1 < X_2 < \cdots < X_n$ be the order statistics of a random sample of size n from the Rectangular (0, 1) population. We prove that $F_n(z) = \Pr\left(\sum_{i=1}^n 1_i X_i \le z\right)$ is given by $F_n(z) = \sum_{\nu=0}^n H(z, a_{\nu}, n)/P_{\nu}(a_{\nu})$ for all z where $a_{\nu} = \sum_{i=\nu}^n 1_i$, $\nu = 1, \dots, n$, and $a_0 = 0$, $P_{\nu}(x) = (a_0 - x)(a_1 - x) \cdots (a_n - x)/(a_{\nu} - x)$ and $H(x, a_{\nu}, n) = \{\frac{1}{2}(z - a_{\nu}) + \frac{1}{2}|z - a_{\nu}|\}^n$. When some of the a_{ν} 's coincide $F_n(z)$ is still well defined by taking appropriate limit of the expression for $F_n(z)$. (Received 15 January 1968.)

3. Distribution-free tests for multivariate independence, symmetry and k-sample problems. C. B. Bell and Paul Smith, Case Western Reserve University.

Let $H_0': F(x_1, \dots, x_s) = F(t(x_1, \dots, x_s))$ for all permutations t; and H_0'' : There exist G_i such that $F(x_1, \dots, x_s) = \prod_{1}^m G_i(x_{r_i}, \dots, x_{q_i})$, where $r_i = 1 + q_{i-1}$; and $z = (x_{11}, \dots, x_{1s}; \dots; x_{n1}, \dots, x_{ns})$ be the generic data point. The permutation groups under which the likelihood functions are invariant are, respectively, S' of order $(n!)(s!)^n$ and S'' of order $(n!)^m$. Theorem 1. A statistic is DF wrt $H_0'[H_0'']$ iff it is a measurable function of some permutation statistic based on S' [S'']. In either case, its null distribution is discrete with probabilities integral multiples of the reciprocal of the order of the permutation group. Theorem 2. Against a simple alternative the most powerful DF test is a permutation test based on the alternative likelihood function. This test is also most powerful DF for a Koopman-Pitman class generated by the alternative. For the k-sample problem $z = (x_{111}, \dots, x_{11s}; \dots, x_{kn_k s})$ and $H_0''': F_1(x_1, \dots, x_s) = \dots = F_k(x_1, \dots, x_s)$. The permutation group S''' is of order $(n_1 + \dots + n_k)!$. Theorems analagous to Theorems 1 and 2 are valid here. (Received 2 February 1968.)

4. On the monotonicity of $E_p(S_t/t)$. Y. S. Chow and W. J. Studden, Purdue University.

Let $S_n=X_1+\cdots+X_n$ be the sums of independent, identically distributed random variables X_n with $P[X_n=1]=p$ and $P[X_n=0]=q=1-p$. Let t be a stopping time relative to the sequence X_n . The following theorem was conjectured by H. Robbins: Theorem. If $P_p[t<\infty]=1$ for every 0< p<1, then $E_p(S_t/t)\leqq E_{p'}(S_t/t)$ for $0< p\leqq p'<1$. In the proof, the Wald's equation $E_pS_t=pE_pt$ for a bounded stopping time t has been utilized. The result holds when the X_i are iid with an exponential density $C(p)e^{Q(p)x}$ with respect to some measure d_μ where Q(p) is increasing in p. This includes the normal and poisson distributions. (Received 29 January 1968.)

5. Some remarks on Scheffé's solution to the Behrens-Fisher problem. Morris L. Eaton, University of Chicago.

Let X_1, \dots, X_m and Y_1, \dots, Y_n $(m \le n)$ be two independent random samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ populations respectively. In this paper, it is shown that Scheffé's proposed solution (Scheffé, H. (1943), $Ann.\ Math.\ Statist.$ 13 371-388) to the problem of testing that $\mu_1 = \mu_2$ is equivalent to the following procedure: (i) form \bar{X} , \bar{Y} and the joint