FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES

BY PAUL E. BOUDREAU

IBM, Research Triangle Park, North Carolina

1. Introduction and notation. When is an arbitrary random process, Y(t), equal, in joint distribution, to a function of a Markov chain?

When is a function of a Markov chain, f[X(t)], itself a Markov chain?

This paper is devoted to the above questions when Y(t) is an exponential type process [13], p. 207, and the Markov chain, X(t) is a basic Markov chain [13], p. 207. The structure of an exponential type process of order K [13], p. 208 is analyzed. A necessary and sufficient condition for an exponential type process of order K to be a function of a basic Markov chain with K states (Theorem 3.1) and a necessary and sufficient condition for an exponential type process to be a Markov chain (Theorem 4.2) are established.

If $\Phi = \{i_1, i_2, \dots, i_n\}$ is a finite sequence of states of a random process Z(t) and $S = \{s_1, s_1 + s_2, \dots, s_1 + s_2 + \dots + s_r\}$ is a corresponding monotone sequence of times, then the pair $(\Phi; S)$ is termed a sequence pair of length n for the process Z(t). We denote the joint probabilities by:

$$P_Z(\Phi; S) = \Pr[Z(\tau_j) = i_j \text{ for } 1 \le j \le n]$$

where $\tau_j = \sum_{i=1}^j s_i$.

2. The structure of an exponential type process. Let Y(t) be an exponential type process of order K, with state space $\mathfrak{M} = \{1, 2, \dots, M\}$. The joint probabilities for Y(t) are given by:

(2.1)
$$P_{Y}(\Phi; S) = b[\prod_{j=1}^{n} e^{Ds_{j}} B(i_{j})] c',$$

where $\mathbf{b} = (b_k)$ is a K-vector of the form $b_1 = 1$, $b_k = 0$ or 1 for $2 \le k \le K$, $D = \text{diag } \{0 = \nu_1, \nu_2, \dots, \nu_k\}$ is a $K \times K$ diagonal matrix, $B(m) = (b_{\alpha\beta}(m))$ for $1 \le m \le M$ are the $K \times K$ matrices appearing in the definition of exponential type, and $\mathbf{c}' = (1, 0, \dots, 0)'$ is transpose of the K-vector $(1, 0, \dots, 0)$.

A set of $M, K \times K$ matrices $R(1), R(2), \dots, R(M)$ is termed a set of factor matrices provided that R(m)R(m) = R(m) for $1 \le m \le M$, R(k)R(m) is the zero matrix whenever $k \ne m$ and $\sum_{m=1}^{M} R(m) = I$, the $K \times K$ identity matrix. The first result here is that the M matrices associated with an exponential type process of order K constitute a set of factor matrices.

Received 31 October 1966; revised 27 September 1967.

1020

¹ The results reported herein are valid under more general definitions of exponential type process and basic Markov chain than those used by Leysieffer [13]. We only require that the ν 's (eigenvalues) be distinct complex numbers with non-positive real parts and $\nu_1 = 0$. Also the restriction that all initial probabilities be non-zero is replaced with the trivial requirement that the state spaces be the "essential" state space. That is, we assume that if m is a state of the process Z(t) then for some $t \ge 0$, $\Pr[Z(t) = m] > 0$.