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1. Introduction and notation. When is an arbitrary random precess, Y(¢),
equal, in joint distribution, to a function of a Markov chain?

When'is a function of a Markov chain, f[X (¢)], itself a Markov chain?

This paper is devoted to the above questions when Y (¢) is an exponential
type process [13], p. 207, and the Markov chain, X(#) is a basic Markov chain
[13], p. 207. The structure of an exponential type process of order K [13], p. 208
is analyzed.! A necessary and sufficient condition for an exponential type process
of order K to be a function of a basic Markov chain with K states (Theorem
3.1) and a necessary and sufficient condition for an exponential type process to
be a Markov chain (Theorem 4.2) are established.

If® = {4, %, ---, 2.} is a finite sequence of states of a random process
Z(t)and S = {s1,s1 + 82, -, 8 + 2+ --- + s} is a corresponding monotone
sequence of times, then the pair (®; S) is termed a sequence pair of length n for
the process Z(t). We denote the joint probabilities by:

P,(®;8) =Pr{Z(r;) = z;forl1 =75 = n]
where 7; = S,

2. The structure of an exponential type process. Let Y(¢) be an exponential

type process of order K, with state space 9 = {1, 2, - .-, M}. The joint prob-
abilities for Y () are given by:

(2.1) Py(®; 8) = b[][j= "B,

where b = (b;) is a K-vector of the form b, = 1,b, = Oor 1 for2 < k < K,
D = diag {0 = », v, -+, w} is a K X K diagonal matrix, B(m) = (bs(m))

for 1 £ m £ M are the K X K matrices appearing in the definition of exponential
type, and ¢’ = (1,0, -« -, 0)’ is transpose of the K-vector (1,0, ---, 0).

A set of M, K X K matrices R(1), R(2), ---, R(M) is termed a set of factor
matrices provided that R(m)R(m) = R(m) for 1 = m = M, R(k)R(m) is the
zero matrix whenever & = m and 2 o1 R(m) = I, the K X K identity matrix.
The first result here is that the M matrices associated with an exponential type
process of order K constitute a set of factor matrices.
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1 The results reported herein are valid under more general definitions of exponential
type process and basic Markov chain than those used by Leysieffer [13]. We only require
that the »’s (eigenvalues) be distinct complex numbers with non-positive real parts and
y1 = 0. Also the restriction that all initial probabilities be non-zero is replaced with the
trivial requirement that the state spaces be the ‘‘essential’’ state space. That is, we assume
that if m is a state of the process Z(¢) then for some ¢ = 0, Pr [Z(t) = m] > 0.
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