THE ϵ -ENTROPY OF CERTAIN MEASURES ON [0, 1] ¹

By T. S. PITCHER

University of Southern California

1. Introduction. The epsilon-entropy of a probability distribution on a metric space was introduced in [4]. If C is a countable covering of the space by measurable sets we write $||C|| = \max_{A \in C} (\text{diameter } (A)), \#(C) = \text{number of sets in } C$ and

$$H(C) = \sum_{A \in C} P(A) \log (P(A))^{-1}.$$

Then the epsilon-entropy H_{ϵ} is given by

$$H_{\epsilon} = \inf_{\|C\| \leq \epsilon} H(C).$$

In this paper we derive estimates of the asymptotic behavior of H_{ϵ} for certain singular measures on [0, 1]. The metric will be the usual length and we will write |A| for the length of an interval A.

It will be convenient to use the notation $\phi(x) = x \log 1/x$. The function ϕ is convex and has the property that if $p_i \ge 0$, $\sum_{i=1}^{n} p_i = 1$ then $\sum_{i=1}^{n} \phi(p_i) \le \log n$.

The theorems of this paper give asymptotic comparisons of H_{ϵ} with log ϵ^{-1} which is approximately the ϵ -entropy of Lebesgue measure on [0, 1]. The asymptotic ratios are given in terms of various information theoretic quantities.

2. Measures related to N-adic expansions. Let N be a fixed integer, $N \ge 2$ and let $(a_i, i = 1, 2, \cdots)$ be a stationary ergodic stochastic process taking the values $0, 1, \cdots, N-1$. We assume that no fixed sequence $(a_i^0), i = 1, 2, \cdots$, has positive probability. Define $k_i(x)$ for irrational x in [0, 1] by

$$x = \sum_{i=1}^{\infty} k_i(x) N^i$$

where the sum on the right is the N-adic expansion of x. Write

$$I_n(l_1, \dots, l_n) = [x \mid k_1(x) = l_1, \dots, k_n(x) = l_n],$$

 $I_n(x) = I_n(k_1(x), \dots, k_n(x)).$

The probability measure P associated with the process induces a measure, which we also call P, on [0, 1] through the formula

$$P(I_n(l_1, \dots, l_n)) = P(a_1 = l_1, \dots, a_n = l_n).$$

According to the Shannon-Macmillan-Breiman theorem

$$\lim_{n\to\infty} n^{-1} \log P(I_n(x)) = -h(P) \text{ a.e. } (P)$$

where h(P) is the entropy of the shift operator.

Received 20 November 1967.

¹ This research was partially supported by National Science Foundation Grant GP-6216. Part of this work was done while the author was a consultant at the Jet Propulsion Laboratory, Pasadena, California.