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ON THE ROBUSTNESS OF SOME CHARACTERIZATIONS OF
THE NORMAL DISTRIBUTION
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1. Introduction. Let us introduce some definitions.
DerFiNiTION 1. Two distribution functions F and G are e-coincident if

sup, [F(z) — G(z)| £ e
DeriNiTION 2. A distribution function F is e-normal if there exist a > 0
and b such that
sup; [F(x) — ®(ax + b)| =< ¢,

where ®(2z) is (2r) [Zwexp { —2*/2} da.
DeriniTION 3. Two random variables n and ¢ are e-independent if for every
a} b’ c) d’ e’ f

(1) |fau+b2<c,du+ez</ dQ(?/: Z)l S
where
(2) Q(y,2) = Pln <y, ¢ <2} — Pln < y}P{¢ < 2}.

In 1956 N. A. Sapogov (Leningrad) [3] showed, that if F; = F; « F; is e-nor-
mal, and if F;(0) = 3,

ffodF1=a1, f’lNﬁdFl(x) —'(112=0'12>0, N = (210g(1/e))§—|—1,
then
sup, [F1(z) — ®((z — @) /m)| < Coy*(log (1/¢)) .

This study was continued by Hoang Hiu Nye (Moscow) [2] who showed in
1966 that, with some supplementary assumptions,

(a) eindependence of the random variables of ¢ + 5 and £ — 7, where £ and 7
are independent, implies B1(e)-normality of the £ and #;

(b) e-independence of

E= 2 ty/n and S = 2 (& — B

where the £; are independent and have the same distribution function F, implies
B2(€e)-normality of F. In his theorems the 3(e) are of the order of

(log (1/e))".

The purpose of this paper is to show that in some cases we can obtain a much
better order of magnitude of the 8(¢).
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