COMPARISON TESTS FOR THE CONVERGENCE OF MARTINGALES

By Burgess Davis

Rutgers-The State University

1. Introduction. If $f = (f_1, f_2, \dots)$ is a sequence of real valued functions on a probability space and $d_1 = f_1, d_i = f_i - f_{i-1}, i > 1$, let

$$f_n^* = \max(|f_1|, \dots, |f_n|), \quad f^* = \sup_n f_n^*,$$

 $S_n(f) = (\sum_{1}^n d_i^2)^{\frac{1}{2}}, \quad \text{and} \quad S(f) = S_{\infty}(f) = \sup_n S_n(f).$

In [1], Burkholder proved that if f and g are martingales relative to the same sequence of σ -fields, f is L^1 bounded, and $S_n(g) \leq S_n(f)$, $n \geq 1$, then g converges almost everywhere. It will be shown here that the condition $S_n(g) \leq S_n(f)$, $n \geq 1$, can be replaced by the weaker condition $S(g) \leq S(f)$. Using this it requires almost no alteration of Burkholder's proofs to make the same replacement in Theorems 6 and 7 of [1].

Using essentially the same method, a theorem will be proved for L^1 -bounded martingales f which gives among other things the convergence of g and finiteness of S(g) if, in place of $S(g) \leq S(f)$, we have $g^* \leq f^*$.

2. Comparison tests for martingale convergence. Suppose g is a martingale such that if $\epsilon > 0$ then there is a stopping time t such that $P(t < \infty) < \epsilon$ and $E(S_t(g)) < \infty$. Then g converges almost everywhere by Theorem 2 of [1], which states that if f is a martingale and $E(S(f)) < \infty$ then f converges almost everywhere, since by this theorem g stopped at t will converge almost everywhere and the probability of stopping at a finite time is arbitrarily small.

LEMMA 1. If $(f_n, \mathfrak{A}_n, n \geq 1)$ is a nonegative martingale with difference sequence $(d_n, n \geq 1)$, and $\lambda > 0$, then almost everywhere

(1)
$$P([f_n^2 + d_{n+1}^2 + \cdots]^{\frac{1}{2}} > \lambda f_n \mid \alpha_n) \leq M/\lambda$$

where M is the constant appearing in Theorem 8 of [1], and almost everywhere

(2)
$$P(\sup [f_n, f_{n+1}, f_{n+2}, \cdots] > \lambda f_n \mid \mathfrak{A}_n) \leq 1/\lambda.$$

PROOF. Let $\lambda > 0$, n be a positive integer, $A \in \mathcal{C}_n$ and $\alpha > 0$. Then

$$P([f_n^2 + d_{n+1}^2 + \cdots]^{\frac{1}{2}} > \lambda [f_n + \alpha], A) = P([(f_n I_A / [f_n + \alpha])^2 + (d_{n+1} I_A / [f_n + \alpha])^2 + \cdots]^{\frac{1}{2}} > \lambda) \le (M/\lambda) P(A),$$

using the fact that the partial sums of the series $f_n I_A/[f_n + \alpha] + d_{n+1}I_A/[f_n + \alpha] + \cdots$ form a nonnegative martingale with the L^1 norm of each partial sum equal to $E(f_n I_A/[f_n + \alpha]) \leq E(I_A) = P(A)$, together with Theorem 8 of [1].

Received 19 February 1968.