NOTES

ON A THEOREM OF SKOROHOD¹

By Lester E. Dubins

University of California, Berkeley

- 1. Skorohod in [2], p. 180, found for each L_2 -martingale X_1 , X_2 , \cdots of mean 0 with independent increments, a sequence of stopping times $\tau_1 \leq \tau_2 \leq \cdots$ for standard Brownian motion B(t) such that (i): $B(\tau_1), B(\tau_2), \cdots$ has the same joint distribution as the martingale and (ii): each τ_i has a finite expectation. (And David Freedman and Strassen [3], p. 318, noted that the assumption of independent increments may be dropped.) The stopping times Skorohod found depend upon a random variable independent of the Brownian motion B(t). The point of this note is to exhibit equally effective stopping times τ_i whose moment of stopping, $\tau_i(\omega)$, depends only on the path ω , and not on a random variable independent of the Brownian motion. The construction incidentally realizes the martingale X_1, X_2, \cdots inside Brownian motion in a natural way even if the X_i do not have finite second moments, and indeed sometimes even if they have no first moment. What is essential is that $E[X_{n+1} - X_n \mid X_1, \dots, X_n]$ be 0, in which event, the process is fair; but it is not essential that the increment X_{n+1} — X_n itself have a mean. Moreover, as will also be evident, the same stopping times τ_i embed the discrete-time martingale X_1, X_2, \cdots inside any continuous-time martingale M(t) that resembles Brownian motion in having continuous, unbounded paths with $M(0) \equiv 0$.
- **2.** Let \mathfrak{C} be the set of all continuous, real-valued functions ω defined for $0 \leq t < \infty$ which are unbounded from above and from below. Of course, if \mathfrak{C} is endowed with its natural σ -field, on which a countably-additive probability is given, then $\omega(t)$, or, more precisely, the set of evaluation maps $\omega \to \omega(t)$, becomes a stochastic process. All continuous processes in this note are to be understood to be of this form.

A lottery is a probability measure on the real line.

The program is to define for every lottery μ with a finite expectation $E(\mu)$, and every $\omega \varepsilon \mathcal{C}$, a nonnegative real number $\tau(\mu, \omega) = \tau(\mu)(\omega)$, so that $\tau(\mu)$ is a stopping time such that, for every martingale $\omega(t)$ with unbounded, continuous paths, and with $\omega(0) \equiv E(\mu)$, the map $\omega \to \omega(\tau(\mu, \omega))$ has μ for its distribution.

To define $\tau(\mu)$, it is convenient to introduce μ^+ and μ^- for the conditional

Received 13 February 1968.

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant 1312-67.