SEQUENTIAL COMPOUND ESTIMATION1

BY DENNIS C. GILLILAND

Michigan State University and University of California, Berkeley

1. Introduction. We consider a sequence of statistical decision problems having the same generic structure with this structure being possessed by what is called the component problem. In the component problem there is a family of probability measures $\{P_{\theta} \mid \theta \in \Omega\}$ over a σ -field $\mathfrak B$ of subsets of $\mathfrak X$, an action space $\mathfrak B$, and a loss function $L \geq 0$ defined on $\mathfrak A \times \mathfrak B$. With $\mathfrak B$ a σ -field of subsets of $\mathfrak B$, a (randomized) decision function φ has domain $\mathfrak X \times \mathfrak B$ and is such that $\varphi(x,\cdot)$ is a probability measure on $\mathfrak B$ for each fixed $x \in \mathfrak X$ and $\varphi(\cdot, C)$ is $\mathfrak B$ measurable for each fixed $C \in \mathfrak B$. The decision procedure φ results in an expected loss (risk)

(1.1)
$$R(\theta, \varphi) = \int \int L(\theta, A) \varphi(x, dA) P_{\theta}(dx).$$

In treating the sequence of component problems it is convenient to introduce the notation $\mathbf{\theta} = (\theta_1, \theta_2, \cdots)$ and $\mathbf{\theta}_i = (\theta_1, \cdots, \theta_i)$; also, we assume that $\mathbf{X}_i \sim P_{\theta_1} \times \cdots \times P_{\theta_i} = \mathbf{P}_i$ for all $i \geq 1$. The action taken at the *i*th stage (i.e., in the *i*th repetition of the component problem) is allowed to depend on \mathbf{X}_i . Formally, a sequential compound procedure $\mathbf{\varphi} = (\varphi_1, \varphi_2, \cdots)$ is such that for each i, φ_i is the means by which the *i*th action is taken, φ_i is defined on $\mathfrak{X}^i \times \mathfrak{C}$ with $\varphi_i(\cdot, C)\mathfrak{G}^i$ measurable for each C, and $\varphi_i(\mathbf{x}_i, \cdot)$ is a probability measure on \mathfrak{C} for each \mathbf{x}_i . The average risk up to stage n is

$$(1.2) R_n(\boldsymbol{\theta}, \boldsymbol{\varphi}) = n^{-1} \sum_{i=1}^n \int \int L(\theta_i, A) \varphi_i(\mathbf{x}_i, dA) \mathbf{P}_i(d\mathbf{x}_i).$$

In keeping with terminology that is becoming standard, we say a sequential compound procedure φ is simple if $\varphi_i(\cdot, C)$ is x_i measurable for each C. If in addition all the φ_i are identical, say $\varphi_i = \varphi$, we say φ is simple symmetric with kernel φ . Simple symmetric procedures are traditional in case Ω is not a singleton set. For every simple symmetric procedure φ and all θ ,

$$(1.3) R_n(\boldsymbol{\theta}, \boldsymbol{\varphi}) = n^{-1} \sum_{i=1}^n R(\theta_i, \boldsymbol{\varphi}) \ge R(G_n)$$

where G_n is the empirical distribution of θ_1 , \cdots , θ_n and $R(\cdot)$ is the Bayes envelope for the component problem. We also note that for any simple procedure φ ,

$$(1.4) \quad \sup_{\theta} \left\{ R_n(\boldsymbol{\theta}, \boldsymbol{\varphi}) - R(G_n) \right\} \geq \sup_{\theta} \left\{ n^{-1} \sum_{i=1}^n R(\theta, \varphi_i) - \inf_{A} L(\theta, A) \right\}$$

$$\geq \inf_{\boldsymbol{\varphi}} \sup_{\theta} \left\{ R(\theta, \varphi) - \inf_{A} L(\theta, A) \right\}.$$

(Samuel (1965b) gives a necessary condition for the left hand side of (1.4) to be zero.) The right hand side of (1.4) is zero only when the component problem is trivial; otherwise, it is some positive number, say ϵ . Therefore, with a modified

Received 21 April 1967; revised 5 April 1968.

¹Research supported in part by the Office of Naval Research under Contract Nonr-2587(02) administered at Michigan State University.