PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS

By T. Petrie

The Institute for Defense Analysis

0. Introduction. This paper is statistically motivated; the content mathematical. The motivation is this: Given is an $s \times s$ ergodic stochastic matrix $A = ((a_{ij}))$ and an $s \times r$ stochastic matrix $B = ((b_{jk}))$. A generates a stationary Markov process $\{W_t\}$ according to $a_{ij} = P[W_{t+1} = j \mid W_t = i]$ and B generates a process $\{Y_t\}$ described by $P[Y_t = k \mid Wt = j] = b_{jk}$. If R is the set of integers $1, 2 \cdots r$, $R_t = R$, and $R^{\infty} = \prod_{i=1}^{\infty} R_t$ (a point $Y \in R^{\infty}$ has coordinates Y_t), then the matrices A and B define a measure $P_{(A,B)}$ on R^{∞} by

$$\begin{array}{rcl} (0.1) & P_{(A,B)}\{Y_1 = k_1, Y_2 = k_2 \cdots Y_n = k_n\} \\ & = \sum_{i_0, \cdots, i_n \in S} a_{i_0} a_{i_0 i_1} b_{i_1 k_1} a_{i_1 i_2} b_{i_2 k_2} \cdots a_{i_{n-1} i_n} b_{i_n k_n} \end{array}$$

where $S = \{1, \dots, S\}$ and $\{a_{i_0}\}$ is the stationary absolute distribution for A, and $k_i \in R$. The resulting process $\{Y_t\}$ is called a probabilistic function of the Markov process $\{W_t\}$. Let Λ_1 be the space of $s \times s$ ergodic stochastic matrices, $\tilde{\Lambda}_1$ be the space of $s \times s$ stochastic matrices, Λ_2 the space of $s \times r$ stochastic matrices, $\Pi = \Lambda_1 \times \Lambda_2$ and $\tilde{\Pi} = \tilde{\Lambda}_1 \times \Lambda_2$. The above associates to $\pi = (A, B) \in \Pi$ and the stationary vector \mathbf{a} for A a stationary measure P_{π} on R^{∞} . We write $P_{\pi}(Y_1, Y_2 \cdots Y_n)$ for that function on R^{∞} whose value at $Y_1 = k_1, \dots, Y_n = k_n$ is given by (0.1) if $\pi = (A, B)$.

We also find it necessary to introduce $R_{-\infty} = \prod_{t=0}^{-\infty} R_t$ and define the measure $P_{(A,B)}$ on $R_{-\infty}$ by $P_{(A,B)}$ $(Y_{-n} = k_{-n}, Y_{-n+1} = k_{-n+1}, \cdots Y_0 = k_0) = P_{(A,B)}$ $(Y_1 = k_{-n}, Y_2 = k_{-n+1}, \cdots Y_{n+1} = k_0)$.

The problem: Fix $\pi_0 \in \Pi$ and let a sample Y_1 , $Y_2 \cdots Y_n$ be generated according to the distribution P_{π_0} . From the sample Y_1 , $Y_2 \cdots Y_n$ obtain estimators $\theta_n(Y)$ of π_0 so that $\theta_n(Y) \to \pi_0$ a.e. P_{π_0} . Throughout this paper π_0 is fixed and π varies in Π .

The mathematics: Chapter I (Classification of Equivalent Processes) demonstrates that the problem has a solution in the following sense: Let $M[\pi_0] = \{\pi \in \Pi \mid P_{\pi} = P_{\pi_0} \text{ as measures on } R^{\infty}\}$. Clearly the points of $M[\pi_0]$ can't be distinguished by any finite or infinite sample. The description of $M[\pi_0]$ is crucial in our study. Let \mathfrak{S}_s be the group of permutations of the integers 1 through s. \mathfrak{S}_s acts on Π by $\sigma(A, B) = (\sigma A, \sigma B)$, $(\sigma A)_{ij} = a_{\sigma(i),\sigma(j)}$, $(\sigma B)_{jk} = b_{\sigma(j)k}$ for $\sigma \in \mathfrak{S}_s$. Observe that $P_{\sigma\pi} = P_{\pi}$ as measures on R^{∞} .

The subset $\sum_{j=1}^{s} a_{ij} = 1$, $a_{ij} \geq 0$, is part of an s-1 dimensional hyperplane in Euclidean s space and has finite non zero (s-1)-dimensional Lebesgue measure $\delta_{(s-1)}$; similarly the set $\sum_{k=1}^{r} b_{jk} = 1$, $b_{jk} \geq 0$, has (r-1)-dimensional Lebesgue measure $\lambda_{(r-1)} \neq 0$. It follows that Π with the product measure has

Received 16 February 1967; revised 23 August 1968.