AN OPTIONAL STOPPING THEOREM

By Benton Jamison and Steven Orey

University of Minnesota

Let $Y = (Y_n, \mathfrak{F}_n, n \geq 0)$ denote a stochastic sequence of integrable random variables such that each Y_n is measurable with respect to \mathfrak{F}_n , (\mathfrak{F}_n) being an increasing sequence of sub- σ -fields of the σ -field of the underlying probability space. The notion of *stopping time* will be relative to (\mathfrak{F}_n) . It may or may not be true that there exists a constant M such that

$$(1) |E[Y_T]| \le M$$

for every bounded stopping time T. In Theorem 1 it is shown that for a certain very special class of sequences a suitable M does exist. This fact is used in Theorem 2 to obtain a result in the ergodic theory of Markov chains. Related results have been observed before, see for instance [1], but the present result seems new and the proof is short and intuitive.

Let $X = (X_n, \mathfrak{F}_n, n = 0)$ denote a Markov chain with state space (S, \mathfrak{B}) and stationary transition probability function P(x, B). Write $P^k(x, A)$ for the k-step transition probability function.

Theorem 1. Let g be a real valued measurable function on (S, \mathfrak{G}) which is bounded in absolute value. Suppose

$$Gg(x) = \lim_{n\to\infty} \sum_{k=1}^n (P^k g)(x)$$

exists for all $x \in S$, and that Gg is bounded in absolute value. Let $Y = (Y_n, \mathfrak{F}_n, n \geq 0), Y_n = \sum_{k=0}^n g(X_k)$. Then there exists an M such that (1) holds for every bounded stopping time T.

PROOF. Write

$$Z_n = \sum_{k=0}^n g(X_k) + Gg(X_n)$$

and observe that $Z=(Z_n\,,\,\mathfrak{F}_n\,,\,n\geq 0)$ is a martingale. For bounded stopping times T the optional sampling theorem for martingales implies $E[Z_T]=E[Z_0]$, hence

$$|E[Y_T] - E[Z_0]| \le \sup_x |Gq(x)|.$$

The Markov chain X is recurrent in the sense of Harris if there exists a σ -finite measure π on (S, \mathfrak{B}) such that $\pi = \pi P$ and $B \in \mathfrak{B}, \pi(B) > 0$ implies

(2)
$$\lim_{n\to\infty} P_x[\mathbf{U}_{k=0}^n [X_k \in B]] = 1, \qquad x \in S.$$

If the convergence in (2) is uniform in x, X is uniformly recurrent. The measure π is unique up to a constant factor, and in the uniformly recurrent case it is necessarily finite and will be assumed to be normalized to be a probability measure.

Received 19 August 1968.