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QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS
RANDOM WALK

By D. J. DaLgY!
Unaversity of Washington

1. Introduction. Consider a random walk {S,} (» = 0, 1, - - -) on the integers
{--+,=1,0,1, ---} for which Sy = 1 and

(1.1) pr{Se1 = Sn + k| S} = pr (all m, k)
such that
(1.2) p1>0, p=0(Fk=—2 -3, ), omap =1

The main object of this note is to study the limits as n — « of

(1.3) a;" = pr{S, = j|min (S1, ---,8,) > 0,8 = 1}

when

(1.4) 0<m=14 D ikp <1,

the limits being zero when m = 1. In other words, if after a long time the process
has not yet visited the set {- - - , —1, 0} what (if any) is its asymptotic behaviour?

An extensive discussion of such questions in the context of Markov chains on a
countable state space is given in papers by Seneta and others, the most refined
results being given in Seneta and Vere-Jones (1966). This note may be regarded
as an illustration of their work in the case of a moderately simple Markov chain,
or as an addendum to what is already known on left-continuous simple random
walks. To simplify our discussion, we assume that

(1.5) {S.} is aperiodie, i.e., ged {jip;a > 0} = 1.

In the trivial case that p_; + po = land p1 < 1,a" = 1ifj = 1land =0
otherwise, so to eliminate this exception we assume further that

(1-6) D1 + Do < 1.
With this notation and
(1.7) f(s) = Zmaps™ (sl = 1),

we shall prove
TueorEM 1. For a left-continuous aperiodic random walk {S.} with mean

step-length m — 1 < 0,
liMpse @ = liMpoe pr {Se = 7|8, >0 (r =1, ---,n), S = 1}
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