QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK

By D. J. DALEY1

University of Washington

1. Introduction. Consider a random walk $\{S_n\}$ $(n = 0, 1, \dots)$ on the integers $\{\dots, -1, 0, 1, \dots\}$ for which $S_0 = 1$ and

(1.1)
$$pr \{S_{n+1} = S_n + k \mid S_n\} = p_k (all n, k)$$

such that

$$(1.2) p_{-1} > 0, p_k = 0 (k = -2, -3, \cdots), \sum_{k=-1}^{\infty} p_k = 1.$$

The main object of this note is to study the limits as $n \to \infty$ of

$$a_j^n = \operatorname{pr} \{ S_n = j \mid \min(S_1, \dots, S_n) > 0, S_0 = 1 \}$$

when

$$(1.4) 0 < m = 1 + \sum_{k=-1}^{\infty} k p_k < 1,$$

the limits being zero when $m \ge 1$. In other words, if after a long time the process has not yet visited the set $\{\cdots, -1, 0\}$ what (if any) is its asymptotic behaviour? An extensive discussion of such questions in the context of Markov chains on a countable state space is given in papers by Seneta and others, the most refined results being given in Seneta and Vere-Jones (1966). This note may be regarded as an illustration of their work in the case of a moderately simple Markov chain, or as an addendum to what is already known on left-continuous simple random walks. To simplify our discussion, we assume that

(1.5)
$$\{S_n\}$$
 is aperiodic, i.e., $\gcd\{j: p_{j-1} > 0\} = 1$.

In the trivial case that $p_{-1} + p_0 = 1$ and $p_{-1} < 1$, $a_j^n = 1$ if j = 1 and $p_{-1} < 1$ and

$$(1.6) p_{-1} + p_0 < 1.$$

With this notation and

(1.7)
$$f(s) = \sum_{k=-1}^{\infty} p_k s^{k+1} \qquad (|s| \le 1),$$

we shall prove

Theorem 1. For a left-continuous aperiodic random walk $\{S_n\}$ with mean step-length m-1<0,

$$\lim_{n\to\infty} a_j^n = \lim_{n\to\infty} \operatorname{pr} \{S_n = j \mid S_r > 0 \ (r = 1, \dots, n), S_0 = 1\}$$

Received 23 January 1968; revised 26 August 1968.

¹ Work done on leave from Business Operations Research Ltd Research Fellowship, Selwyn College, Cambridge, England.