UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES1

By N. F. G. MARTIN

The University of Virginia

It is known [3] that under bounded conditions on the expected values of a martingale sequence the martingale will converge almost surely to a random variable and if the rth powers of the absolute values of the random variables in the martingale are uniformly integrable then the martingale will converge in L_r to a random variable with finite rth absolute moment. In this note we consider the case of a family of martingales each adapted to the same increasing family of σ -fields and give a condition on the family which will assure under bounded conditions on the martingales that the convergence given by the martingale convergence theorem is uniform in the family. We obtain uniform L_1 convergence for arbitrary families and uniform a.s. convergence for countable families. The a.s. convergence was proven for a slightly different case in [4] and the L_1 -convergence is obtained from a suggestion made by the referee of that paper.

Throughout we will be working in a fixed probability space $(\Omega, \mathfrak{B}, P)$ and all σ -fields will be sub σ -fields of \mathfrak{B} . If A and B are sets $A \triangle B$ will denote the symmetric difference of A and B, i.e., $A \triangle B = (A - B) \cup (B - A)$. The expected value of a random variable will be denoted by E, the conditional expectation given a σ -field \mathfrak{C} by $E(\cdot \mid \mathfrak{C})$ and the condition probability given \mathfrak{C} by $P(\cdot \mid \mathfrak{C})$. The conditional entropy of a σ -field \mathfrak{C} given a σ -field \mathfrak{C} is denoted by $H(\mathfrak{C} \mid \mathfrak{C})$ and is defined to be

$$\sup \left\{ E[-\sum_{\mathit{F} \in \mathit{F}} P(\mathit{F} \mid \mathit{C}) \log P(\mathit{F} \mid \mathit{C})] \right\}$$

where the supremum is taken over all finite partitions \mathfrak{F} of Ω into sets from α . For properties of $H(\alpha \mid \mathfrak{C})$ one may consult Jacobs [2] or Billingsley [1].

DEFINITION 1. Let I be an index set and for each i in I let $\{X_n^i : n \ge 0\}$ be a sequence of random variables. We say that $\{X_n^i\}$ L_r -converges uniformly in i to X^i provided that for every $\epsilon > 0$ there is an $N(\epsilon)$ such that for all $n \ge N(\epsilon)$ sup ${}_iE\{|X_n^i - X^i|^r\} < \epsilon$. We say that $\{X_n^i\}$ a.s. converges uniformly in i to X^i provided that there exists a set Z of probability zero such that for every $\epsilon > 0$ and $w \not\in Z$, there exists an integer $N(\epsilon, w)$ such that $\sup_i |X_n^i(w) - X^i(w)| < \epsilon$. We shall denote these types of convergences respectively by $X_n^i \to X^i$ [L_r unif i] and $X_n^i \to X^i$ [a.s. unif i].

LEMMA 1. Let $\{\Omega_n\}$ denote an increasing sequence of σ -fields and Ω denote the σ -field generated by $\bigcup_n \Omega_n$. If for some n, $H(\Omega \mid \Omega_n) < \infty$ then for every $\epsilon > 0$ there exists an integer N such that for all $A \in \Omega$, there exists an event $B \in \Omega_N$ such that $P(A \triangle B) < \epsilon$.

PROOF. Since $H(\alpha \mid \alpha_n) < \infty$ for some n, $\lim_n H(\alpha \mid \alpha_n) = H(\alpha \mid \alpha) = 0$

Received 12 August 1968.

¹ Research supported in part by ARO Grant 662.