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ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER
OF INDEPENDENT RANDOM VECTORS!

By LeoN JAY GLESER

The Johns Hopkins University

1. Introduction. Consider a sequence of p X 1 random (column) vectors
{ya},n = 1,2, --- . Suppose that there exists a sequence {B,} of real p X p non-
singular matrices and a proper p-variate distribution function 7 (y) such that

(1.1) limpse £ (Bn_lyn) =& (:1/* )s

where y* is a p X 1 random vector having the distribution function F (y). (The
notation £(y*) denotes the law or distribution of y*. Limu.e £(Z,) = £(Z)
means that Z, converges in law (converges weakly) to Z. The notation
£(9(0, ¢’I)) used later is short for the law of a multivariate normal random
variable with mean vector 0 and covariance matrix o°I.) Suppose further that we
have an infinite sequence {v,},n = 1,2, -+, of positive integer-valued random
variables, and a sequence {k,} of positive integers such that

(1.2) liMpsw ko = ©,  pliMpse kn vn = 1.
We are interested in conditions under which
(1.3) limye £ (Beyys,) = £@*).

In the scalar case (p = 1), Anscombe [2] found a sufficient condition for (1.3)
to hold. One extension of that theorem (Theorem 1 of [2]) to the vector case
(p > 1) is the following.

TurorReM 1.1. If the sequences {y.}, { Ba}, {va}, and {k,} satisfy (1.1) and (1.2),
then for (1.3) to hold, it is sufficient that for given ¢ > 0,1 > 0, there exists a positive
integer mo and a positive number ¢ such that for all n = no,

e < e >1—n.

(1.4) P{maxn’:[n——n'[<cn “Bnﬁl (yn - yn')

Here, for ap X lvector Z = (Zi,Zs, -+ , Z,)', the notation || Z|); represents the
Ly norm of Z, i.e., | Z|ls = (Z'Z)}. The notation || Z ||« s used to represent the L.,
norm of Z, i.e., || Z]|o = maxi<;<p |Zj].

Note. We note that nothing is supposed concerning the dependence of », on
the random vectors ¥ .

Theorem 1.1 is proven in Section 2. The proof closely resembles that given by
Anscombe [2] in the scalar case, and consequently is only briefly sketched.
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