DIVERGENCE PROPERTIES OF SOME MARTINGALE TRANSFORMS

By Burgess Davis

A martingale difference sequence $d = (d_n, n \ge 1)$ relative to the sequence $(\mathfrak{F}_k, k \geq 0)$ of σ -fields is said to satisfy condition MZ if

- (i)
- $E(d_n^2 \mid \mathfrak{F}_{n-1}) = 1$ a.e. for all n $E(|d_n| \mid \mathfrak{F}_{n-1}) \ge K$ a.e. for some K > 0 and all n. (ii)

This definition is due to Richard F. Gundy, who in [3] studies transforms of martingales with difference sequences d satisfying condition MZ, that is, processes of the form $(\sum_{1}^{n} v_{i} d_{i}, n = 1, 2, \cdots)$ where $v = (v_{i}, i \geq 1)$ is a sequence of functions such that v_n is \mathfrak{F}_{n-1} measurable. v is called a multiplier sequence. Gundy proves that for such a transform the three sets

$$A = \{\lim \sum_{i=1}^{n} v_i d_i \text{ exists and is finite}\}$$

$$B = \{\Sigma v_i^2 < \infty\}$$

$$C = \{\Sigma v_i^2 d_i^2 < \infty\}$$

are equal with probability 1. Here we prove that, as is known in some special cases, A, B, and C are equivalent to the set

$$D^+ = \{\sup \sum_{i=1}^n v_i d_i < \infty\}$$

(and thus also to $D^- = \{\inf \sum_{i=1}^n v_i d_i > -\infty \}$). Thus the sample functions of the process $(\sum_{i=1}^{n} v_i d_i, n \ge 1)$ almost surely either converge or oscillate between $-\infty$ and $+\infty$. This was conjectured by Gundy in [3]. Y. S. Chow has already given a partial answer in [2], showing the equivalence of A, B, C, and |D| = $\{\sup |\sum_{1}^{n} v_i d_i| < \infty\}.$

The definition of property MZ is extended to finite sequences of martingale differences in the obvious way. Whenever a statement like $(d_i, \mathfrak{F}_i, i \geq 1)$ satisfies condition MZ is made the 0th σ -field required by the definition is to be taken as $\{\Omega, \emptyset\}$. In addition we can and do always assume without loss of generality that $E(d_1 \mid \mathfrak{F}_0) = 0$ a.e..

LEMMA 1. Let $\epsilon > 0$. There is a number $\delta_{\epsilon} = \delta_{\epsilon}(K)$ such that if $d = (d_1, \dots, d_n)$ satisfies (i) and (ii) and $(v_1, \dots, v_n) = v$ is a multiplier sequence such that $P(\sum_{i=1}^{n} v_i^2 > \epsilon) > \epsilon \text{ then}$

$$P\left(\sup_{1\leq k\leq n}\left|\sum_{1}^{k}v_{i}\,d_{i}\right|>\delta_{\epsilon}\right)>\delta_{\epsilon}.$$

PROOF. Suppose this is not true. For $i \ge 1$ let $d_i = (d_{ij}, \mathfrak{F}_{ij}, 1 \le j \le n_i)$ be independent martingale difference sequences, that is let \mathfrak{F}_{1n_1} , \mathfrak{F}_{2n_2} , \cdots be independent σ -fields, and let $(v_{ij}, 1 \leq j \leq n_i)$ be associated multiplier sequences such that for each i the conditions of the lemma are satisfied and such that

$$P\left(\sup_{1 \le k \le n_i} \left| \sum_{j=1}^k v_{ij} d_{ij} \right| > 1/2^i\right) \le 1/2^i.$$