so oalle ## CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILY IN A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS¹ By D. C. Doss² University of Saskatchewan - 1. Introduction. The linear exponential family was characterized by a recurrence relation in cumulants by Patil [3] and by a recurrence relation in raw moments by Wani [4]. In this paper we present a general approach of characterizing the linear exponential family by a recurrence relation in functions of cumulants under the assumption that cumulants can be in turn expressed as functions of those occurring in the relation. Then, the characterization given by Wani [4] becomes a particular instance of ours since the raw moments can be expressed as functions of cumulants and vice versa. - 2. The induced linear exponential family. A family $\mathcal{O}_e = \{P_\omega : \omega \in \Omega_\mu\}$ of probability distributions is said to be linear exponential in ω over a Euclidean sample space (\mathfrak{X}, β) if $$(2.1) dP_{\omega}(x) = \{e^{\omega x}/f(\omega)\} d\mu(x)$$ where Ω_{μ} is assumed to be the natural parameter space with a nonvoid interior. It is understood by a natural parameter space that Ω_{μ} consists of all parameter points ω for which $$f(\omega) = \int e^{\omega x} d\mu(x)$$ is positive and finite. Moreover, $f(\omega)$ is analytic in the interior of Ω_{μ} . If \mathfrak{X} is p-dimensional, then we further assume that Ω_{μ} is a subset of a p-dimensional Euclidean space so that ωx can be interpreted as a scalar product of two vectors. We may call P_{ω} a linear exponential distribution in ω , but we bear in mind that P_{ω} may involve some other parameter in which it may not be linear exponential. We observe that $f(\omega)$ is not unique; for any positive constant multiple of $f(\omega)$ gives rise to the same distribution P_{ω} . For example, given any interior point ξ of Ω_{μ} we may write (2.1) as (2.3) $$dP_{\theta,\xi}^{*}(x) = dP_{\omega}(x) = \{e^{\theta x}/m(\theta,\xi)\} dP_{\xi}(x)$$ where $\theta = \omega - \xi$ and $m(\theta, \xi) = f(\theta + \xi)/f(\xi)$. We can readily see that $m(\theta, \xi)$ is the moment generating function (mgf) of P_{ξ} with θ as its parameter. Thus we are led to define $P_{\theta,\xi}^*$ as an induced linear exponential distribution in θ of the distribution P_{ξ} . In fact, we can extend this definition to any distribution, not Received 25 July 1968. ¹ This paper was prepared while the author was a fellow of the Summer Research Institute of the Canadian Mathematical Congress, 1968. ² At present with University of Alabama in Huntsville.