so oalle

## CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILY IN A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS<sup>1</sup>

By D. C. Doss<sup>2</sup>

University of Saskatchewan

- 1. Introduction. The linear exponential family was characterized by a recurrence relation in cumulants by Patil [3] and by a recurrence relation in raw moments by Wani [4]. In this paper we present a general approach of characterizing the linear exponential family by a recurrence relation in functions of cumulants under the assumption that cumulants can be in turn expressed as functions of those occurring in the relation. Then, the characterization given by Wani [4] becomes a particular instance of ours since the raw moments can be expressed as functions of cumulants and vice versa.
- 2. The induced linear exponential family. A family  $\mathcal{O}_e = \{P_\omega : \omega \in \Omega_\mu\}$  of probability distributions is said to be linear exponential in  $\omega$  over a Euclidean sample space  $(\mathfrak{X}, \beta)$  if

$$(2.1) dP_{\omega}(x) = \{e^{\omega x}/f(\omega)\} d\mu(x)$$

where  $\Omega_{\mu}$  is assumed to be the natural parameter space with a nonvoid interior. It is understood by a natural parameter space that  $\Omega_{\mu}$  consists of all parameter points  $\omega$  for which

$$f(\omega) = \int e^{\omega x} d\mu(x)$$

is positive and finite. Moreover,  $f(\omega)$  is analytic in the interior of  $\Omega_{\mu}$ . If  $\mathfrak{X}$  is p-dimensional, then we further assume that  $\Omega_{\mu}$  is a subset of a p-dimensional Euclidean space so that  $\omega x$  can be interpreted as a scalar product of two vectors. We may call  $P_{\omega}$  a linear exponential distribution in  $\omega$ , but we bear in mind that  $P_{\omega}$  may involve some other parameter in which it may not be linear exponential.

We observe that  $f(\omega)$  is not unique; for any positive constant multiple of  $f(\omega)$  gives rise to the same distribution  $P_{\omega}$ . For example, given any interior point  $\xi$  of  $\Omega_{\mu}$  we may write (2.1) as

(2.3) 
$$dP_{\theta,\xi}^{*}(x) = dP_{\omega}(x) = \{e^{\theta x}/m(\theta,\xi)\} dP_{\xi}(x)$$

where  $\theta = \omega - \xi$  and  $m(\theta, \xi) = f(\theta + \xi)/f(\xi)$ . We can readily see that  $m(\theta, \xi)$  is the moment generating function (mgf) of  $P_{\xi}$  with  $\theta$  as its parameter. Thus we are led to define  $P_{\theta,\xi}^*$  as an induced linear exponential distribution in  $\theta$  of the distribution  $P_{\xi}$ . In fact, we can extend this definition to any distribution, not

Received 25 July 1968.

<sup>&</sup>lt;sup>1</sup> This paper was prepared while the author was a fellow of the Summer Research Institute of the Canadian Mathematical Congress, 1968.

<sup>&</sup>lt;sup>2</sup> At present with University of Alabama in Huntsville.