CONDITIONS FOR OPTIMALITY AND VALIDITY OF SIMPLE LEAST SQUARES THEORY

By Sujit Kumar Mitra and C. Radhakrishna Rao

Indian Statistical Institute

1. Notation and introduction. A matrix is denoted by a bold face letter such as **A**, **X**, Σ etc. For a matrix **X** of order $n \times m$

 $R(\mathbf{X})$ represents the rank of \mathbf{X} .

M(X) represents the linear space generated by the columns of X.

 \mathbf{X}^- represents a g-inverse as defined by Rao (1962, 1966, 1967b).

 $\mathbf{P}_{\mathbf{x}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$ is the projection operator which projects arbitrary *n*-vectors onto $\mathfrak{M}(\mathbf{X})$.

 X^{\perp} denotes a matrix of maximum rank such that $X'X^{\perp} = 0$.

I denotes an identity matrix. The order of I will usually not be explicitly mentioned but can always be determined from the context.

Consider the Gauss-Markoff model $(\mathbf{Y}, \mathbf{X}\mathbf{G}, \mathbf{\Sigma})$ where \mathbf{Y} is a vector of observations, $E(\mathbf{Y}) = \mathbf{X}\mathbf{G}$ and $D(\mathbf{Y}) = \mathbf{\Sigma}$, \mathbf{X} being a given matrix of order $n \times m$ and \mathbf{G} a vector of unknown parameters. In the context of the discussion in the present paper, the model will be simply referred to as $(\mathbf{X}, \mathbf{\Sigma})$. The best linear unbiased estimator (BLUE) of an estimable parametric function $\mathbf{p}'\mathbf{G}$, where \mathbf{p} is a vector, under the model $(\mathbf{X}, \mathbf{\Sigma})$ is a linear function $\mathbf{L}'\mathbf{Y}$ such that $E(\mathbf{L}'\mathbf{Y}) = \mathbf{p}'\mathbf{G}$ and $\mathbf{L}'\mathbf{\Sigma}\mathbf{L}$ is a minimum. It is well known that a BLUE under $(\mathbf{X}, \mathbf{\Sigma})$ can be obtained by the general method of least squares (see Rao, 1965, page 188 and Mitra and Rao, 1968).

The BLUE of $\mathbf{p}'\beta$ under $(\mathbf{X}_0, \mathbf{\Sigma}_0)$ is said to be $(\mathbf{X}, \mathbf{\Sigma})$ optimal if it is also the BLUE of $\mathbf{p}'\beta$ under the model $(\mathbf{X}, \mathbf{\Sigma})$. The object of the present paper is to characterize the set of $(\mathbf{X}, \mathbf{\Sigma})$ such that for every estimable parametric function the BLUE under a given model $(\mathbf{X}_0, \sigma^2\mathbf{I})$ is $(\mathbf{X}, \mathbf{\Sigma})$ -optimal. Further, the classes of $\mathbf{\Sigma}$ for which different statistical methods based on $(\mathbf{X}, \sigma^2\mathbf{I})$ remain valid have been obtained.

In previous papers Rao (1967a, 1968)¹ gave the necessary and sufficient contions for BLUE under (\mathbf{X}, Σ_0) to be (\mathbf{X}, Σ) -optimal, in which case the investigation was confined to the characterization of Σ only. Similar results, but not providing an exact representation of Σ , were also obtained by Zyskind (1967), Watson (1967) and Kruskal (1968) in the special case of $\Sigma_0 = \sigma^2 \mathbf{I}$.

2. The main results.

LEMMA 2.1. If for every estimable parametric function the BLUE under $(\mathbf{X}_0, \sigma^2 \mathbf{I})$ is $(\mathbf{X}, \sigma^2 \mathbf{I})$ -optimal, it is necessary and sufficient that \mathbf{X} is of the form

$$\mathbf{X} = \mathbf{X}_0 + (\mathbf{I} - \mathbf{P}_{\mathbf{X}_0})\mathbf{A},$$

Received 29 October 1968; revised 19 February 1969.

¹ The results were first given in a lecture at the Fifth Berkeley Symposium in 1965.