STOCHASTIC INTEGRALS AND DERIVATIVES1

By DEAN ISAACSON

Iowa State University

- **0.** Introduction. The question we consider in this paper is whether or not the stochastic integral has a property analogous to the Fundamental Theorem of Calculus. That is, if $Y(t, \omega) = \int_0^t \phi(s, \omega) dM(s, \omega)$ and if $\Delta Y(t, \omega) = Y(t + \Delta t, \omega) Y(t, \omega)$, does $\lim_{\Delta t \to 0} \Delta Y(t, \omega) / \Delta M(t, \omega) = \phi(t, \omega)$ and in what sense does the limit exist?
- 1. Stochastic integrals using Brownian motion as integrator. In this section we consider only stochastic integrals using Brownian motion as integrator. Throughout this paper we will let $X=(X_t,\mathfrak{F}_t,t\geq 0)$ denote one dimensional standard Brownian motion defined on (Ω,\mathfrak{F},P) , a complete probability space. Let \mathfrak{F}_t be the complete sub σ -field of \mathfrak{F} generated by $\{X_s\colon s\leq t\}$. (By standard Brownian motion we mean the process is normalized so that

$$\operatorname{Var}\left[X(t,\omega) - X(s,\omega)\right] = t - s \text{ for } s < t.$$

For notational purposes we let $\operatorname{Plim}_{\Delta t \to 0} \Delta Y(t, \omega) = H(t, \omega)$ mean that $\Delta Y(t, \omega)$ converges in probability to $H(t, \omega)$ as $\Delta t \to 0$ where we always take $\Delta t > 0$.

DEFINITION. A real valued process, $\phi(s, \omega)$, is stochastically integrable on R^+ with respect to $X(t, \omega)$ if:

- (i) $\phi(s, \omega)$ is adapted to $\{\mathfrak{F}_s\}$.
- (ii) $\phi(s, \omega)$ is measurable on $(R^+ \times \Omega, \beta(R^+) \times \mathfrak{F})$.
- (iii) $\int_0^t E |\phi(s, \omega)|^2 ds < \infty$ for all finite $t \ge 0$.

Let $M_1(X)$ denote the space of all processes stochastically integrable with respect to $X(t, \omega)$. For $\phi(s, \omega) \varepsilon M_1(X)$ one can define the stochastic integral $\int_0^t \phi(s, \omega) dX(s, \omega)$. For a discussion of this integral see [2] or [3].

To motivate the type of answer one should expect to our question, consider the case where $\phi(s, \omega) = X(s, \omega)$. i.e., as an integrand we take Brownian motion itself. One can easily show that $X(s, \omega)$ is stochastically integrable. In fact, the integral can be evaluated.

$$\int_0^t X(s, \omega) dX(s, \omega) = (X^2(t, \omega)/2) - (t/2) \quad ([2] \text{ page 444}).$$

Hence, if $Y(t, \omega) = (X^2(t, \omega)/2) - (t/2)$, then

$$\Delta Y(t, \omega)/\Delta X(t, \omega) = X(t, \omega) + (\Delta X(t, \omega)/2) - (\Delta t/2\Delta X(t, \omega)).$$

We now must show the last two terms on the right-hand side go to zero. Fix $t \ge 0$. Now as $\Delta t \to 0$, one easily sees that $\Delta X(t, \omega)/2 \to 0$ a.s. and in L_2 . How-

Received 6 November 1968.

¹ This paper is based on my Ph.D. Thesis written under the direction of Professor Steven Orey at the University of Minnesota.