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BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF LEARNING
FROM EXPERIENCE! 2
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1. Introduction. A statistical model of decision-making is formally described
as follows: given is a set A of possible decisions or actions and a family ® =
{ve:0 & ®} of probability distributions on a measurable space (Z, ¥). The de-
cision-maker (statistician) observes a random variable X with values in the
space (Z, ¥) and distributed according to some »y ¢ ®, and on the basis of this
observation decides for some action @ ¢ A. The appropriateness of his decision
then depends on the action chosen, and also on an unknown parameter 8 (state
of Nature), which specifies the distribution »y of the random variable observed,
and is measured by a numerical loss function L defined on the product space
® x A. A rational decision-maker is then assumed to use a decision function &,
which assigns to every observed value (sample) z ¢ & an action a ¢ A in such a
manner that the resulting loss is as small as possible. It is clear, however, that
no decision function can minimize the loss itself for all values of 6, since a de-
cision function must not depend on this unknown parameter.

In the Bayesian approach, this problem is resolved by assuming that the pa-
rameter 6 is also a random variable with distribution = (prior distribution)
known to the statistician, and the optimum decision function 8,* (called Bayes
decision function again 7) is then defined as that, for which the expected loss
E{L(6, 5(X))} attains its minimum—the so-called Bayes risk p(7) =
mins E‘I’{L(07 5<X) )} .

To justify this Bayesian model as appropriate for studying decision-making
we face a problem concerning both the adequacy of the assumption of random-
ness of # and knowledge of the prior distribution as well as the question of in-
terpretation of the minimum expected loss as optimum.

Two essentially different approaches have been taken in this respect. In the
first (subjectivistic) approach the loss function is looked upon as a negative
utility associated with all pairs (6, a), 0 £ O, a ¢ A, and satisfying Von Neumann-
Morgenstern’s (or other analogous) axioms. It is then shown that this is tanta-
mount to the existence of a prior distribution, and the optimality of Bayes risk
follows from the expected utility hypothesis.

The second (statistical) approach assumes, on the other hand, that the de-
cision problem in question is a typical member of a large population of identical
decision situations with parameters 6 varying arbitrarily along the population.
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