THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT RANDOM VARIABLES¹

By S. M. SAMUELS

Purdue University

The purpose of this paper is to prove the following theorem.

THEOREM. Let $S_n = X_1 + \cdots + X_n$ be a sum of n independent, non-negative random variables with means

$$\mathbf{v} = (\nu_1, \dots, \nu_n) = (EX_1, \dots, EX_n)$$

$$N = \nu_1 + \dots + \nu_n;$$

and, for each $\lambda > N$, let

$$\psi_n(\lambda; \mathbf{v}) = \sup P(S_n \ge \lambda),$$

where the supremum is taken over all such S_n . (We ignore $\lambda \leq N$ since the supremum is trivially one.) Then,

$$\lambda \geq [\max (4, n-1)]N \Rightarrow \psi_n(\lambda; \mathbf{v}) = 1 - \prod_{1 \leq i \leq n} (1 - \nu_i/\lambda),$$

which is attained if and only if, for each i,

$$P(X_i = \lambda) = \nu_i/\lambda = 1 - P(X_i = 0).$$

Since these X_i 's are identically distributed when the means are equal, we have an immediate

COROLLARY. Let $\{X_i: 1 \leq i \leq n\}$ be i.i.d., non-negative, with common mean ν . If $\lambda > [\max (4n, (n-1)n)]\nu$, then

$$P(X_1 + \cdots + X_n \ge \lambda) \le 1 - (1 - \nu/\lambda)^n.$$

Equality holds if and only if $X_i \in \{0, \lambda\}$.

We shall present an outline of the proof as a series of lemmas. The first three lemmas show that, to prove the theorem, it suffices to prove the proposition following Lemma 3. The remaining three lemmas constitute a proof of that proposition. After stating the six lemmas, we sketch their proofs. Finally, there is a brief discussion of how the theorem may be improved.

Lemma 1. Without loss of generality we may assume that each X_i has at most two mass points—call them a_i and b_i —satisfying:

(1)
$$0 \le a_i < \nu_i \le b_i \le \lambda,$$
$$P(X_i = b_i) = (\nu_i - a_i)/(b_i - a_i) = 1 - P(X_i = a_i).$$

Received 30 April 1968; revised 28 October 1968.

¹ This research was supported in part by the Office of Naval Research Contract NONR 1100(26) at Purdue University and in part by National Science Foundation Grant GP-9400, also at Purdue University.