ON A CHARACTERIZATION OF THE WIENER PROCESS BY CONSTANT REGRESSION

By B. L. S. Prakasa Rao

Indian Institute of Technology, Kanpur

1. Introduction. Recently Cacoullos [1] has proved the following theorem which characterizes Normal Distribution by constant regression of one linear statistic on another linear statistic.

THEOREM 1.1. Let X_i , $1 \le i \le n$ be a random sample from a univariate population with non-degenerate distribution function F(x), and assume that F(x) has moments of every order. Consider the linear statistics

$$U = a_1 X_1 + \dots + a_n X_n; \qquad V = b_1 X_1 + \dots + b_n X_n$$

where a_i , $1 \le i \le n$; b_i , $1 \le i \le n$ have the property that $\sum_{i=1}^{n} a_i b_i = 0$ implies that $\sum_{i=1}^{n} a_i b_i^k \ne 0$ for all k > 1. Then U has constant regression on V, i.e.,

$$E[U|V] = E[U]$$
 a.e.

if and only if (1) the population distribution F is normal, and (2) $\sum_{i=1}^{n} a_i b_i = 0$.

In this paper we derive a similar result for a characterization of the Wiener process. We would like to mention that a theorem similar to Theorem 1.1 has also been obtained by Rao [4].

2. Preliminaries. Let T = [A, B]. We shall consider stochastic processes $\{X(t), t \in T\}$ which have finite moments of all orders. In particular, $\{X(t), t \in T\}$ will be a stochastic process of the second order. Let $a(\cdot)$ be a function which is continuous on [A, B], and suppose that the mean function m(t) = E[X(t)] and the covariance function r(s, t) = E[X(t)X(s)] - E[X(t)]E[X(s)] are of bounded variation in [A, B]. It can be shown that the integral

exists as the limit in the mean (lim) of the corresponding Riemann-Stieltjes sums.

A stochastic process $\{X(t), t \in T\}$ is said to be a homogeneous process with independent increments if the distribution of the increments X(t+h)-X(t) depends only on h but is independent of t, and if the increments over non-overlapping intervals are stochastically independent. The process is said to be continuous if X(t) converges in probability to X(s) as t tends to s for every $s \in T$. Let $\{X(t), t \in T\}$ be a continuous homogeneous process with independent increments. Let $\varphi(u; h)$ denote the characteristic function of X(t+h)-X(t). It is well known that $\varphi(u; h)$ is infinitely divisible and $\varphi(u; h) = [\varphi(u; 1)]^h$. See Lukacs [2].

A homogeneous process $\{X(t), t \in T\}$ with independent increments is called a Wiener process if the increments X(t+h)-X(t) are normally distributed with variance proportional to h.

321

Received April 2, 1969; revised July 28, 1969.