THE DISTRIBUTION OF THE RATIOS OF MEANS TO THE SQUARE ROOT OF THE SUM OF VARIANCES OF A BIVARIATE NORMAL SAMPLE By S. A. PATIL AND S. H. LIAO Tennessee Technological University 1. Introduction. Let (X_i, Y_i) $i = 1, 2, \dots, m$, be independent observations on a random vector (X, Y) which has a bivariate normal distribution with $$EX = EY = 0$$, $EX^2 = EY^2 = \sigma^2$, $EXY = \rho\sigma^2$. Let $$\overline{X} = m^{-1} \sum_{i=1}^{m} X_i, \qquad \overline{Y} = m^{-1} \sum_{i=1}^{m} Y_i, \qquad s_1^2 = m^{-1} \sum_{i=1}^{m} (X_i - \overline{X})^2,$$ $$s_2^2 = m^{-1} \sum_{i=1}^{m} (Y_i - \overline{Y})^2.$$ Recently Siddiqui [6] has considered the distribution of $(m-1)^{\frac{1}{2}}\overline{X}/s_1$, $(m-1)^{\frac{1}{2}}\overline{Y}/s_2$. For m>3, he obtained asymptotic results. We define $Z=ms_1^2+ms_2^2$, $s^2=(2m-1)^{-1}Z$, so that s^2 is an unbiased estimator of σ^2 based on both X and Y observations. In this note we consider the distribution of (T_1, T_2) , where $T_1=m^{\frac{1}{2}}s^{-1}\overline{X}$, $T_2=m^{\frac{1}{2}}s^{-1}\overline{Y}$. It is noted that (T_1, T_2) are independent of the scale parameter. We have obtained the probability density function (pdf) of (T_1, T_2) and the distribution function of (T_1, T_2) . Also marginal and limiting distributions are discussed. 2. The probability density function of Z. The following lemma is used to determine the pdf of Z. Lemma. Let (X_i,Y_i) , $i=1,2,\cdots,m;m>3$ be the observations from the bivariate normal distribution with the zero means, correlation coefficient ρ and common variance σ^2 ; then the distribution of Z, defined in Section 1, can be expressed as the distribution function of $[U_1(1+\rho)\sigma^2+U_2(1-\rho)\sigma^2]$, where U_1,U_2 are independent and identically distributed chi-square random variables with (m-1) degrees of freedom. Using Lemma 2 of [1] it can be easily shown that (1) $$M_{\mathbf{Z}}(t) = E e^{t\mathbf{Z}} = \left[1 - 2t(1+\rho)\sigma^2\right]^{-\frac{1}{2}(m-1)} \left[1 - 2t(1-\rho)\sigma^2\right]^{-\frac{1}{2}(m-1)}$$ which is the same as moment generating function of $[U_1(1+\rho)\sigma^2 + U_2(1-\rho)\sigma^2]$. The distribution of Z does not depend on the means of (X_i, Y_i) . Received June 4, 1969; revised October 8, 1969.