ON THE WEAK CONVERGENCE OF PROBABILITY MEASURES¹

BY LUCIEN LECAM

University of California, Berkeley

1. Introduction. Let \mathscr{X} be a set carrying a σ -field \mathscr{A} and a family of probability measures $\{P_{\theta}:\theta\in\Theta\}$. Let L be the smallest L-space which contains all the P_{θ} , $\theta\in\Theta$. This is the smallest linear space which is complete for the usual total variation norm and contains all the measures smaller than linear combinations of the P_{θ} . It is a Banach space with a dual M which contains, often properly, the space of equivalence classes of bounded \mathscr{A} -measurable functions.

Upon replication of the experiment $\{\mathcal{X}, \mathcal{A}, P_{\theta}; \theta \in \Theta\}$ the relevant measures are the product measures $P_{\theta} \otimes P_{\theta}$ on the product space $\{\mathcal{X} \times \mathcal{X}, \mathcal{A} \times \mathcal{A}\}$. Several problems about the existence of "consistent tests", "sequential discrimination" and similar subjects lead to the following question:

If μ is a measure in the w(L, M) closure \overline{S} of the set $S = \{P_{\theta}; \theta \in \Theta\}$ is the product measure $\mu \otimes \mu$ in the closure of $\{P_{\theta} \otimes P_{\theta}; \theta \in \Theta\}$?

It is an easy consequence of a theorem of Dunford and Pettis (see [1], [2]) that the answer to this question is "yes" if the set $\{P_{\theta}: \theta \in \Theta\}$ is w(L, M) relatively compact in L. In particular if there is a sequence $\{P_{\theta_n}\}$ which converges to μ then $P_{\theta_n} \otimes P_{\theta_n}$ converges to $\mu \otimes \mu$.

The answer is also "yes" if $\mathscr X$ is a countable set. Finally, the answer is "yes" if the set $S = \{P_\theta : \theta \in \Theta\}$ is convex, since in this case the strong closure of S coincides with its w(L, M) closure. The purpose of the present note is to show that there do exist families $\{P_\theta : \theta \in \Theta\}$ for which the answer is "no". In fact we shall demonstrate the existence of a *countable* collection $S = \{P_\theta : \theta \in \Theta\}$ and a measure μ such that $\mu \in \overline{S}$ but such that $\mu \otimes \mu$ is remote from the closure of the convex hull of the set $\{P_\theta \otimes P_\theta : \theta \in \Theta\}$.

In the usual statistical context one considers not only the products $P_{\theta} \otimes P_{\theta}$ but also for each integer n the experiment \mathscr{E}_n consisting of taking n independent identically distributed observations whose distribution is either μ or one of the P_{θ} ; $\theta \in \Theta$. The available σ -field for \mathscr{E}_n is the product \mathscr{A}^n of n copies of \mathscr{A} . The measures are the corresponding products μ^n or P_{θ}^n . Let then \mathscr{P} be the set of all probability measures on $\{\mathscr{X},\mathscr{A}\}$. For each n one can use \mathscr{A}^n , or equivalently the space \mathscr{V}_n of equivalence classes of bounded \mathscr{A}^n -measurable functions to define a uniform structure \mathscr{U}_n on \mathscr{P} . Let also \mathscr{U} be the uniform structure defined by $\bigcup_n \mathscr{V}_n$. Let \widehat{S} be the closure of $S = \{P_{\theta} : \theta \in \Theta\}$ in \mathscr{P} for the structure \mathscr{U} . Let us say that there exist uniformly consistent tests of μ against S if there exist functions $\varphi_n \in \mathscr{V}_n$, $0 \le \varphi_n \le 1$ such that $E[\varphi_n | \mu] \to 1$ while $\sup_{\theta} \{E[\varphi_n | P_{\theta}]; \theta \in \Theta\} \to 0$.

Received September 22, 1969.

¹ This paper was prepared with the partial support of a National Science Foundation Grant GP8690. It is submitted in partial fulfillment of the promotion requirements, University of California, Berkeley.