A CENTRAL LIMIT THEOREM WITH NONPARAMETRIC APPLICATIONS¹

By Gottfried E. Noether

The University of Connecticut

Many nonparametric test and confidence interval procedures can be based on statistics of the type

 $S = \sum_{i \in I} \sum_{i \in J} v_{ii},$

where $v_{ij} = 1$ or 0 depending on whether some other variable u_{ij} is < or $> u_0$, u_0 being an appropriate constant, and where two variables u_{ij} and u_{gh} are independent if no subscript in the (i, j)-pair matches a subscript in the (g, h)-pair. If the number of elements in I and the number of elements in I depend linearly on some index I0, we are interested in a simple central limit theorem for statistics I1 as I2 as I3 increases indefinitely.

Let $\mu = ES$ and $\sigma^2 = \text{var } S$. We then have the following

THEOREM. A sufficient condition for the asymptotic normality of $(S-\mu)/\sigma$ is that $\operatorname{Var} S$ is of order N^3 . (We shall express this condition by writing $\sigma^2 = \Omega(N^3)$.)

PROOF. Let
$$w_{ij} = v_{ij} - p_{ij}$$
, where $p_{ij} = P(v_{ij} = 1) = P(u_{ij} < u_0)$, and set

$$W = \sum_{i \in I} \sum_{j \in J} w_{ij}.$$

If μ_r denotes the rth moment of W, $r=3,4,\cdots$, we shall show that for $k=2,3,\cdots$, $\lim_{N\to\infty}\mu_{2k-1}/\sigma^{2k-1}=0$ and $\lim_{N\to\infty}\mu_{2k}/\sigma^{2k}=(2k-1)(2k-3)\cdots 3$. These are the moments of the standard normal distribution, so that the theorem follows.

We have

(1)
$$\sigma^2 = \operatorname{var} W = EW^2 = \sum_{i,j} \sum_{g,h} Ew_{ij} w_{gh}.$$

Under ties among the subscripts we shall understand that one or both subscripts in the (i, j)-pair are tied with one or both subscripts in the (g, h)-pair. A simple tie is one in which exactly one subscript in one pair ties exactly one subscript in the other pair. Since for untied subscripts $Ew_{ij}w_{gh}=0$, we have $Var W=O(N^3)$. The requirement $Var W=\Omega(N^3)$ implies that not all covariances between two simply tied variables w_{ij} and w_{gh} vanish.

Before we investigate the general moments of order 2k-1 and 2k, let us fix ideas by considering the case k=2. We have

$$\mu_3 = EW^3 = \sum_{i_1,j_1} \sum_{i_2,j_2} \sum_{i_3,j_3} Ew_{i_1j_1} w_{i_2j_2} w_{i_3j_3}.$$

 $Ew_{i_1j_1}w_{i_2j_2}w_{i_3j_3}$ can differ from 0 only if there are ties involving subscripts from each of the three subscript pairs. Thus $\mu_3 = O(N^4)$ and $\mu_3/\sigma^3 = O(N^4)/\Omega(N^{9/2}) = O(N^{-\frac{1}{2}})$. For μ_4 the contribution arising from ties involving three or four subscript

Received November 21, 1969.

¹ Research supported by NSF Grant GP-11470.