DISTRIBUTIONS OF Z^{γ} AND Z^* FOR COMPLEX Z WITH RESULTS APPLIED TO THE COMPLEX NORMAL DISTRIBUTION¹

By Archie D. Brock² and Richard G. Krutchkoff

Virginia Polytechnic Institute

1. Introduction. Let $Z = Re^{i\Theta}$ be a complex random variable such that the density of (R, Θ) is given by

(1.1)
$$f(r,\theta) = \frac{\left|bc_4\right| c_2^{c_1} (1-a^2)^{\frac{1}{2}}}{2\pi m \Gamma(c_1)} r^{c_1 c_4 - 1} \lambda^{c_1 c_3 - 1} \exp(-c_2 \lambda^{c_3} r^{c_4})$$

where all parameters are real, r > 0, $m\pi/|b| < \theta < m\pi/|b|$, $\lambda = 1 - a\sin{(b\theta + \alpha)}$, |a| < 1, $b \ne 0$, $c_1 > 0$, $c_2 > 0$, $c_4 \ne 0$, m a natural number, and $0 \le \alpha < 2\pi$ and where $f(r, \theta)$ is zero otherwise. The generalized Mellin transform (GMT) (see [2]) will be used in order to obtain the distribution of Z^{γ} and Z^* when γ is a nonzero real number and Z^* is the complex conjugate of Z. The density function (1.1) is of special interest due to the importance of certain special cases of the family. In particular: (i) Weibull-uniform, (ii) chi-uniform, (iii) gamma-uniform, (iv) complex normal.

2. The distributions of Z^{γ} and Z^* .

THEOREM 2.1. The GMT of the complex random variable $Z = Re^{i\Theta}$, with density of (R, Θ) given by (1.1), is

(2.1)
$$h(s,t) = \frac{-(1-a^2)^{\frac{1}{2}}\Gamma(s/c_4+c_1)\sin(mt\pi/b)}{4\pi mc_2^{s/c_4}\Gamma(c_1)\Gamma(c_3s/c_4+1)}$$

$$\cdot \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} H_{jl} [(t/b) \sin^{j} \alpha + ij \sin^{j-1} \alpha \cos \alpha]$$

where

(2.2)
$$H_{jl} = \frac{(-1)^{mj} \Gamma(2l+j+c_3 s/c_4+1) \Gamma(j/2+t/2b) \Gamma(j/2-t/2b) a^{2l+j}}{2^{2l} \Gamma(j+1) \Gamma(j/2+t/2+l+1) \Gamma(j/2-t/2+l+1)}$$

and $t \neq 0, \pm b, \pm 2b, \dots$, and $s/c_4 + c > 0$. [for any integer k, h(s, kb) is evaluated by taking the limit of h(s, t) as $t \rightarrow kb$.]

PROOF. By definition, the GMT of Z is

(2.3)
$$h(s,t) = \frac{|bc_4| c_2^{c_1} (1-a^2)^{\frac{1}{2}}}{2\pi m \Gamma(c_1)} \int_{-m\pi/|b|}^{m\pi/|b|} \int_0^{\infty} r^{s+c_1c_4-1} \lambda^{c_1c_3-1}$$

$$\cdot \left[\exp \left(it\theta - c_2 \lambda^{c_3} r^{c_4} \right) \right] dr d\theta.$$

Received August 5, 1968; revised March 18, 1970.

¹ Research sponsored by the U.S. Army Research Office, Durham, North Carolina, grant number DA-ARO (D)-31-124-G410.

² Now at East Texas State University.