THE HARTMAN-WINTNER LAW OF THE ITERATED LOGARITHM FOR MARTINGALES¹

BY WILLIAM F. STOUT

University of Illinois

According to the Hartman-Wintner law of the iterated logarithm [4], $\{Y_i, i \ge 1\}$ independent identically distributed with $EY_1 = 0$ and $EY_1^2 = 1$ implies that $\limsup \sum_{i=1}^n Y_i/(2n\log_2 n)^{\frac{1}{2}} = 1$ almost surely (a.s.). We generalize this result to stationary ergodic martingale difference sequences.

THEOREM. Let $(Y_i, i \ge 1)$ be a stationary ergodic stochastic sequence with $E[Y_i \mid Y_1, Y_2, \dots, Y_{i-1}] = 0$ a.s. for all $i \ge 2$ and $EY_1^2 = 1$. Then $\limsup \sum_{i=1}^n Y_i / (2n \log_2 n)^{\frac{1}{2}} = 1$ a.s.

(1)
$$\sum_{i=1}^{n} E[(Z_i)^2 \mid \mathscr{F}_{i-1}]/n \to 1 \text{ a.s.} \qquad \text{and hence that}$$

(2)
$$\sum_{i=1}^{n} E[(Z_i')^2 \mid \mathscr{F}_{i-1}] \to \infty \text{ a.s.}$$

According to [5], if $(Z_i, \mathscr{F}_i, i \ge 1)$ is a martingale difference sequence with $s_n^2 = \sum_{i=1}^n E[Z_i^2 \mid \mathscr{F}_{i-1}] \to \infty$ a.s., $u_n = (2\log_2 s_n^2)^{\frac{1}{2}}$, \mathscr{F}_{i-1} measurable random variables $L_i \to 0$ a.s., and $|Z_i| \le L_i s_i / u_i$ a.s. for all $i \ge 1$, then $\limsup \sum_{i=1}^n Z_i / (s_n u_n) = 1$ a.s.

Recalling (1) and (2), Z_i' satisfies the hypotheses of this theorem with $L_i = 2K_i u_i (i/\log_2 i)^{\frac{1}{2}}/s_i$ since $|Z_i'| \le 2K_i (i/\log_2 i)^{\frac{1}{2}}$ a.s. Thus, using (1), $\limsup \sum_{i=1}^n Z_i'/(2n\log_2 n)^{\frac{1}{2}} = \limsup \sum_{i=1}^n Z_i'/(s_n u_n) = 1$ a.s.

Received October 24, 1969; revised May 25, 1970.

¹ This research was partially supported by the National Science Foundation under Grant GP 14786.