AN EXTENSION OF THE HEWITT-SAVAGE ZERO-ONE LAW1

BY SUSAN HORN AND SIEGFRIED SCHACH

The Johns Hopkins University

Let $(\Omega^{\infty}, \mathfrak{A}^{\infty})$ be the direct product of countably many copies of the measurable space (Ω, \mathfrak{A}) and let $\mu = \prod \mu_i$ be a product probability measure on $(\Omega^{\infty}, \mathfrak{A}^{\infty})$. The Hewitt-Savage Zero-One Law says that if all μ_i are equal then the sets of \mathfrak{A}^{∞} which are invariant under all permutations of finitely many coordinates have μ -measure either zero or one. We derive an extension of this theorem to a case where the μ_i are not all identical.

A product probability measure $\mu = \prod \mu_i$ is said to be *recurring* if for each $i = 1, 2, \cdots$ there is some j > i such that $\mu_j = \mu_i$, i.e., each factor of μ occurs infinitely often.

THEOREM. If $\mu = \prod \mu_i$ is recurring then $\mu(S)$ is zero or one for every set $S \in \mathfrak{A}^{\infty}$ which is invariant under all permutations of finitely many coordinates.

PROOF. Let S be such a permutation invariant set. Let \mathscr{F}_n be the σ -field of cylinder sets generated by the first n factors of $(\Omega^{\infty}, \mathfrak{A}^{\infty})$. Then there exist sets $A_n \in \mathscr{F}_n$ such that $\mu(S\Delta A_n) \to 0$ as $n \to \infty$. Since μ is recurring, for each n there are n distinct indices $j_i > n$ such that $\mu_{j_i} = \mu_i$, $1 \le i \le n$. Hence for each n there exists a measure preserving transformation φ_n induced by a permutation π_n of a finite number of indices such that A_n is independent of $\varphi_n(A_n)$. Thus as $n \to \infty$

$$\mu^2(S) \leftarrow \mu(A_n) \mu(\varphi_n(A_n)) = \mu(A_n \cap \varphi_n(A_n)) \rightarrow \mu(S)$$

which implies $\mu(S)$ is either zero or one.

LEMMA. Let $\mathcal{F} \supset \mathcal{G}_1 \supset \mathcal{G}_2 \supset \cdots$ be a decreasing sequence of σ -fields and let λ and ν be two probability measures on \mathcal{F} whose restrictions to $\bigcap_{n=1}^{\infty} \mathcal{G}_n$ are identical. Then

$$\sup_{S \in \mathscr{S}_n} |\lambda(S) - \nu(S)| \to 0 \qquad as \quad n \to \infty.$$

PROOF. Let $\alpha \equiv \frac{1}{2}(\lambda + \nu)$ and let α_n , λ_n , ν_n be the restrictions of α , λ , ν to \mathcal{S}_n . Let $f_n \equiv d\lambda_n/d\alpha_n$ and $g_n \equiv d\nu_n/d\alpha_n$. Then f_n and g_n are reversed martingales which converge in $L_1(\alpha)$ to a common limit (Doob (1953)). Hence $f_n - g_n \to_{L_1(\alpha)} 0$, which implies the desired result since for $S \in \mathcal{S}_n$,

$$|\lambda(S) - \nu(S)| \leq ||f_n - g_n||_{L_1(\alpha)}.$$

COROLLARY. Let μ be a recurring product probability measure on $(\Omega^{\infty}, \mathfrak{A}^{\infty})$. Let \mathscr{S}_n be the σ -field of sets in \mathfrak{A}^{∞} that are invariant under all permutations of the first n coordinates. If probability measures λ and ν are absolutely continuous with respect to μ , then $\sup_{S \in \mathscr{S}_n} |\lambda(S) - \nu(S)| \to 0$ as $n \to \infty$.

Received June 9, 1969; revised April 27, 1970.

¹ Research supported by USPHS-GM 14554-03.