DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS III

By Jerome Sacks¹ and Donald Ylvisaker²

Northwestern University and University of California, Los Angeles

1. Introduction. Consider the linear regression model in which one may observe a stochastic process Y having the form

(1.1)
$$Y(t) = \sum_{i=1}^{J} \beta_i f_i(t) + Z(t), \qquad t \in [0, 1].$$

Here the β_j are taken as unknown constants, the f_j as known functions and Z is assumed to have mean function zero and known covariance kernel R. Let T be a subset of [0, 1] and let $\hat{\beta}_T$ denote the best linear estimate (if it exists) of $\beta = (\beta_1, \dots, \beta_J)'$ based on observing $\{Y(t), t \in T\}$. When the covariance matrix of $\hat{\beta}_T$ is nonsingular it will be denoted by A_T^{-1} ; when T = [0, 1] we will use the notation A^{-1} .

In an earlier paper [1], we treated the special case J=1 of (1.1). The problem posed was that of finding a member T_n in the class $\mathcal{D}_n = \{T \mid T = \{t_0, t_1, \dots, t_n\}, 0 = t_0 < t_1 < \dots < t_n = 1\}$ of all n+1 point "designs" for which $A_{T_n}^{-1} = \inf_{T \in \mathcal{D}_n} A_T^{-1}$. We assumed there that $f_1 = f$ had the form

$$(1.2) f(t) = \int_0^1 R(s, t)\varphi(s) ds$$

for some continuous function φ and that R satisfied assumptions slightly weaker than those labelled A, B and C in Section 2 below (see also the Remark at the end of Section 2). It was then shown that

(1.3)
$$\inf_{T \in \mathcal{D}_n} A_T^{-1} - A^{-1} = \frac{c^3(\varphi)}{12n^2 A^2} + o(1)$$

(1.4)
$$A_{T_n^*}^{-1} - A^{-1} = \frac{c^3(\varphi)}{12n^2A^2} + o(1)$$

where T_n^* is a set of *n*-tiles of the probability distribution function with density $c^{-1}(\varphi)\varphi^{\frac{2}{3}}$. Thus our approximate solution to the design problem in \mathcal{D}_n is T_n^* . We say when (1.3) and (1.4) are satisfied that sampling according to $\varphi^{\frac{2}{3}}$ is asymptotically optimum.

In a second paper [2], the full model (1.1) was discussed. There, for a variety of criteria ψ which would measure the size of A_T^{-1} (e.g. the generalized variance), we sought T_n in \mathcal{D}_n for which $\psi(A_{T_n}^{-1}) = \inf_{T \in \mathcal{D}_n} \psi(A_T^{-1})$. It was assumed that each f_j had the form (1.2) with associated φ_j and that R was subject to the same restrictions as in [1]. Our results then had the following character: given a criterion

www.jstor.org

Received May 8, 1969; revised May 4, 1970.

¹ Research sponsored by NSF Grant GP-24500.

² Research sponsored in part by NSF Grant GP-8882 while this author was at the University of Washington and in part by Air Force Grant AF-AFOSR-459-66.