A FUNCTIONAL CENTRAL LIMIT THEOREM FOR k-DIMENSIONAL RENEWAL THEORY¹

By Douglas P. Kennedy

Stanford University²

1. Introduction. Let $\{\mathbf{X}_n, n \geq 1\}$ be a sequence of random vectors in \mathbb{R}^k defined on some probability triple (Ω, \mathcal{F}, P) and set $\mathbf{S}_n = \sum_{i=1}^n \mathbf{X}_i$ for $n \geq 1$, and $\mathbf{S}_0 = \mathbf{0}$. Let $h: \mathbb{R}^k \to [0, \infty)$ be a function with continuous first partial derivatives, such that $h(\mathbf{x}) > 0$ for $\mathbf{x} \neq 0$, $\mathbf{x} \in \mathbb{R}^k$; assume furthermore that h is homogeneous of degree one (i.e., for all $\mathbf{x} \in \mathbb{R}^k$, $\lambda \geq 0$, $h(\lambda \mathbf{x}) = \lambda h(\mathbf{x})$). We define the associated point process $\{M(t): t \geq 0\}$ by $M(t) = \min\{n \geq 1: h(\mathbf{S}_n) > t\}$, where $M(t) = \infty$ if no such n = 1 exists.

The main result of this paper is a functional central limit theorem (invariance principle) for the process $\{M(t): t \ge 0\}$. Section 2 is devoted to two preliminary lemmas and the theorem is proved in Section 3.

The ordinary central limit theorem for $\{M(t): t \ge 0\}$ was given by Farrell [4]. Bickel and Yahav [1] discuss renewal theory for which h is any norm giving the Euclidean topology in \mathbb{R}^k . Related material on k-dimensional renewal theory may be found in Farrell [3] and Stam [5].

Our analysis shall be carried out in D[0, 1], the space of right continuous functions on [0, 1] having left limits and endowed with the Skorohod metric d. For an account of the weak convergence of probability measures on D[0, 1] the reader is referred to the book by Billingsley (1968). We shall use \Rightarrow to denote weak convergence of probability measures. When stochastic processes or ordinary random variables appear in such an expression we mean the measures induced by these functions. Let $C[0, 1] \equiv C$ denote the space of continuous functions on [0, 1] and ρ the uniform metric on C and D; $C^k \equiv C^k[0, 1]$ and $D^k \equiv D^k[0, 1]$ will denote the product spaces of k copies of C and D respectively, with the appropriate product topologies.

2. Preliminaries. Let $\mu \in \mathbb{R}^k$, $\mu \neq 0$ and define the random functions Y_n , H_n in D^k and D induced by the sequence of partial sums $\{S_n, n \geq 1\}$ as follows

$$Y_n(t) = \left[\mathbf{S}_{[nt]} - nt\mu\right]/n^{\frac{1}{2}}$$

$$H_n(t) = \left[h(\mathbf{S}_{[nt]}) - nth(\mu)\right]/n^{\frac{1}{2}}.$$

Let \cdot denote the ordinary scalar product in \mathbb{R}^k and $\nabla h = (\partial h/\partial x_1, \dots, \partial h/\partial x_k)$. Note that ∇h is a homogeneous function of degree 0, in particular $\nabla h(t\mu) = \nabla h(\mu)$ for all $t \in [0, 1]$.

LEMMA 1. If $Y_n \Rightarrow \xi$ in D^k then $H_n \Rightarrow \nabla h(\mu) \cdot \xi$ in D, where $\nabla h(\mu) \cdot \xi$ is the scalar product of the process ξ and the constant vector $\nabla h(\mu)$.

Received February 12, 1970. Author now at the University of Sheffield, England.

¹ This work was supported by Office of Naval Research Contract N00014-67-A-0112-0031 and National Science Foundation Grant GP-8790.

² Now at the University of Sheffield, England