APPROACHABILITY IN A TWO-PERSON GAME

By Tien-Fang Hou

Bell Telephone Laboratories, Incorporated

1. Introduction. Let M = ||M(i,j)|| be an $r \times s$ matrix whose elements M(i,j) are probability distributions with finite $E||\cdot||^{\alpha}$, $||\cdot||$ is the Euclidean norm and $\alpha > 1$, in a Euclidean k-space \mathscr{E}^k . We associate with M a game between two players, I and II, with the following infinite sequence of engagements: At the nth engagement, $n = 1, 2, \cdots$, player I selects $i = 1, \cdots, r$ with probability $p_n(1), \cdots$, $p_n(r)$, $\sum_{i=1}^r p_n(i) = 1$, and player II selects $j = 1, \cdots, s$ with probability $q_n(1), \cdots$, $q_n(s)$, $\sum_{j=1}^s q_n(j) = 1$. Each selection is made without either player knowing the choice of the other player. Having chosen i and j, payoff $Y_n \in \mathscr{E}^k$ is then determined according to the distribution M(i,j). The point Y_n and probabilities

(1.1)
$$p_n = (p_n(1), \dots, p_n(r))$$
 and $q_n = (q_n(1), \dots, q_n(s))$

are announced to both players after each engagement. We call p_n player I's move and q_n player II's move.

A strategy for player I is a sequence of functions $f = \{f_n\}, n = 0, 1, 2, \cdots$, where f_n is defined on the 3*n*-tuples $(p_1, q_1, Y_1; \cdots; p_n, q_n, Y_n)$ with value p_{n+1} in

(1.2)
$$P = \{ p = (p(1), \dots, p(r)) : \sum_{i=1}^{r} p(i) = 1 \text{ and } p(i) \ge 0 \},$$

and $p_1 = f_0$ is simply a point of P. For player II, a strategy $g = \{g_n\}$ is defined similarly, except that

$$(1.3) g_n(p_1, q_1, Y_1; \dots; p_n, q_n, Y_n) = q_{n+1} \in Q and q_1 = g_0 \in Q,$$

where

(1.4)
$$Q = \{q = (q(1), \dots, q(s)) : \sum_{1}^{s} q(j) = 1 \text{ and } q(j) \ge 0\}.$$

For a given M, each strategy pair f, g determines a sequence of random variables Y_1, Y_2, \cdots (vector payoffs) in \mathscr{E}^k .

Our objective here is to investigate the controllability of the center of gravity of the actual payoffs $\overline{Y}_n = \sum_{1}^{n} Y_m/n$ in a long series of plays.

We denote the Euclidean distance between \overline{Y}_n and a nonempty set S in k-space by $\delta(\overline{Y}_n, S)$. For a given M, the set S is said to be approachable (see [1] and [2]) by I in M, if there exists an f^* for I such that, for every g,

(1.5)
$$\delta(\overline{Y}_n, S) \to 0 \quad \text{a.s.},$$

where Y_1, Y_2, \cdots are the payoffs determined by f^*, g . The set S is excludable by

Received August 15, 1969; revised October 26, 1970.