INFINITE DIVISIBILITY OF DISCRETE DISTRIBUTIONS, II

By W. D. WARDE¹ AND S. K. KATTI²

Florida State University

1. Introduction. Let $\{P_i\}$, $i=0,1,2\cdots,P_0\neq 0,P_1\neq 0$ represent the probability of a random variable X taking on the values $0,1,2,\cdots$. Katti (1967) shows that a necessary and sufficient set of conditions for X to be infinitely divisible is that

(1)
$$\pi_i = iP_i/P_0 - \sum_{j=1}^{i-1} \pi_{i-j}P_j/P_0 \ge 0$$

for $i = 1, 2, \dots$. The aim of this paper is to derive a sufficient condition and to present some additional results.

2. A sufficient condition.

THEOREM 2.1. A discrete distribution $\{P_i\}$ $i=0,1,\cdots,P_0\neq 0,P_1\neq 0$ is infinitely divisible if $\{P_i/P_{i-1}\}$ $i=1,2,\cdots$ forms a monotone increasing sequence.

PROOF. Denote P_i/P_{i-1} by K_i . By assumption, $K_1 \le K_2 \le \cdots$. Note that since P_1 and P_0 are nonzero, $\{K_i\}$ $i=1,2,\cdots$ are positive and nonzero. Now,

(2)
$$\frac{P_i}{P_0} = \frac{P_i}{P_{i-1}} \frac{P_{i-1}}{P_{i-2}} \cdots \frac{P_1}{P_0} = \prod_{j=1}^i K_j.$$

From (1),

(3)
$$\pi_{i} = \frac{iP_{i}}{P_{0}} - \sum_{j=1}^{i-1} \frac{P_{j}\pi_{i-j}}{P_{0}} = i\left(\prod_{j=1}^{i} K_{j}\right) - \sum_{j=1}^{i-1} \pi_{i-j}\left(\prod_{k=1}^{j} K_{k}\right).$$

On replacing i by (i+1) in (3), we get

(4)
$$\pi_{i+1} = (i+1) \left(\prod_{j=1}^{i+1} K_j \right) - \sum_{j=0}^{i-1} \pi_{i-j} \left(\prod_{k=1}^{j+1} K_k \right).$$

Hence,

(5)
$$\frac{\pi_{i+1}}{K_{i+1}} = (i+1) \left(\prod_{j=1}^{i} K_j \right) - \sum_{j=0}^{i-1} \frac{\pi_{i-j}}{K_{i+1}} \left(\prod_{k=1}^{j+1} K_k \right).$$

On using property (2), we get,

(6)
$$\frac{\pi_{i+1}}{K_{i+1}} \ge i \left(\prod_{j=1}^{i} K_j \right) - \sum_{j=1}^{i-1} \pi_{i-j} \left(\prod_{k=1}^{j} K_k \right) - \frac{\pi_i K_1}{K_{i+1}},$$

Received May 9, 1968.

Research supported by the United States Department of Agriculture, Grant 12-14-100-9183 (20).

¹ Now at Iowa State University.

² Now at University of Missouri.