SHORT COMMUNICATIONS

A NOTE ON ADMISSIBLE SAMPLING DESIGNS FOR A FINITE POPULATION

By V. M. Joshi

Secretary, Maharashtra Government, Bombay

1. Preliminary. Let U be a finite population of units u_1, u_2, \dots, u_N . A sample s means any non-empty subset of U. A sampling design P is determined by defining a probability P on the set S of all possible samples s, P(s) denoting the probability of the sample s. With each unit u_i is associated a variate value x_i , $i = 1, 2, \dots, N$. $\mathbf{x} = (x_1, x_2, \dots, x_N)$ denotes a point in the N-space R_N . Then for estimating the population total

$$T(\mathbf{x}) = \sum_{i=1}^{N} x_i$$

the Horvitz-Thompson estimate (H-T estimate for short) is given by

(2)
$$\bar{e}(s, \mathbf{x}) = \sum_{i \in s} \frac{x_i}{\pi_i}$$

For unbiased estimation of $T(\mathbf{x})$ to be possible, it is a necessary condition that $\pi_i > 0$, $i = 1, 2, \dots, N$. Throughout the following we restrict ourselves to the class C of sampling designs, for which this condition is satisfied and admissibility of a sampling design P means admissibility within the class C.

The variance of the H-T estimate is given by

(3)
$$V(\bar{e}, \mathbf{x}) = \sum_{i=1}^{N} \frac{x_i^2}{\pi_i} + 2 \sum_{1 \le i \le N} \frac{\pi_{ij}}{\pi_i \pi_i} x_i x_j - T^2(\mathbf{x}).$$

In (2) and (3), π_i and π_{ij} are respectively the inclusion probabilities of the units u_i and the pair of units u_i , u_j , i.e.

(4)
$$\pi_{i} = \sum_{s \ni i} P(s),$$

$$\pi_{ij} = \sum_{s \ni i,j} P(s), \qquad i, j = 1, 2, \dots, N.$$

In (2), (3) and (4) we have written $i \in s$ for $u_i \in s$, and similarly for $s \ni i$ and $s \ni i, j$.

The expected sample size for a given sampling design P is given by

$$(5) v = \sum_{s \in s} P_s n(s),$$

where n(s) denotes the size of the sample s, i.e. the number of units u_i which belong to s.

Let P' be another sampling design and for P' let $V'(\bar{e}, \mathbf{x})$ and s' be the variance of the H-T estimate and the expected sample size. Suppose the sampling cost is

Received November 4, 1969; revised November 17, 1970.