ON THE COMPARISON OF TWO EMPIRICAL DISTRIBUTION FUNCTIONS¹

By Lajos Takács

Case Western Reserve University

1. Introduction. Let $\xi_1, \xi_2, \dots, \xi_m$ be mutually independent random variables having a common distribution function F(x). Denote by $F_m(x)$ the empirical distribution function of the sample $(\xi_1, \xi_2, \dots, \xi_m)$. The empirical distribution function $F_m(x)$ is defined as the number of variables $\xi_1, \xi_2, \dots, \xi_m$ less than or equal to x divided by m.

Furthermore, let $\eta_1, \eta_2, \dots, \eta_n$ be mutually independent random variables having a common distribution function G(x), and denote by $G_n(x)$ the empirical distribution function of the sample $(\eta_1, \eta_2, \dots, \eta_n)$.

For the purpose of testing the hypothesis that $F(x) \equiv G(x)$ in 1939 N. V. Smirnov [6] introduced the statistic

(1)
$$\delta^+(m,n) = \sup_{-\infty < x < \infty} \left[F_m(x) - G_n(x) \right]$$

and showed that if F(x) and G(x) are two identical continuous distribution functions, then the distribution of $\delta^+(m, n)$ does not depend on $F(x) \equiv G(x)$, and

(2)
$$\lim_{m\to\infty,n\to\infty} \mathbf{P}\left\{ \left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \delta^+(m,n) \le x \right\} = 1 - e^{-2x^2}$$

for $x \ge 0$. In this case the distribution of the random variable $\delta^+(m, n)$ for n = m was found in 1951 by B. V. Gnedenko and V. S. Korolyuk [2], and for n = mp where p is a positive integer in 1955 by V. S. Korolyuk [3]. (See also [7] and [8].) Obviously $\delta^+(m, n)$ and $\delta^+(n, m)$ have the same distribution for all $m = 1, 2, \cdots$ and $n = 1, 2, \cdots$

We can express $\delta^+(m, n)$ also in a simpler way. Denote by $\eta_1^*, \eta_2^*, \dots, \eta_n^*$ the random variables $\eta_1, \eta_2, \dots, \eta_n$ arranged in increasing order of magnitude. Then we can write that

(3)
$$\delta^{+}(m,n) = \max_{1 \le r \le n} [F_{m}(\eta_{r}^{*}) - G_{n}(\eta_{r}^{*} - 0)].$$

Now let us introduce another statistic. For any a let us define $\eta_a(m, n)$ as the number of subscripts $r = 1, 2, \dots, n$ for which

(4)
$$G_n(\eta_r^* - 0) \le F_m(\eta_r^*) + a/n < G_n(\eta_r^*).$$

Received May 25, 1970.

¹ This research was sponsored by the National Science Foundation under Contract No. GP-9629.